Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates.
نویسندگان
چکیده
Epithelial metaplasia occurs when one predominant cell type in a tissue is replaced by another, and is frequently associated with an increased risk of subsequent neoplasia. In both mouse and human pancreas, acinar-to-ductal metaplasia has been implicated in the generation of cancer precursors. We show that pancreatic epithelial explants undergo spontaneous acinar-to-ductal metaplasia in response to EGFR signaling, and that this change in epithelial character is associated with the appearance of nestin-positive transitional cells. Lineage tracing involving Cre/lox-mediated genetic cell labeling reveals that acinar-to-ductal metaplasia represents a true transdifferentiation event, mediated by initial dedifferentiation of mature exocrine cells to generate a population of nestin-positive precursors, similar to those observed during early pancreatic development. These results demonstrate that a latent precursor potential resides within mature exocrine cells, and that this potential is regulated by EGF receptor signaling. In addition, these observations provide a novel example of rigorously documented transdifferentiation within mature mammalian epithelium, and suggest that plasticity of mature cell types may play a role in the generation of neoplastic precursors.
منابع مشابه
Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway.
Acinar-to-ductal metaplasia in the pancreas is associated with an increased risk for tumorigenesis. Molecular dissection of this process in vitro has shown that primary acinar cells, in response to EGF receptor ligands, can transdifferentiate into duct-like epithelia, passing through a nestin-positive intermediate, in a Notch pathway-dependent manner. Here, we show that in vitro acinar transdif...
متن کاملOrigin of exocrine pancreatic cells from nestin-positive precursors in developing mouse pancreas
During pancreatic development, endocrine and exocrine cell types arise from common precursors in foregut endoderm. However, little information is available regarding regulation of pancreatic epithelial differentiation in specific precursor populations. We show that undifferentiated epithelial precursors in E10.5 mouse pancreas express nestin, an intermediate filament also expressed in neural st...
متن کاملRole of cadherin-mediated cell-cell adhesion in pancreatic exocrine-to-endocrine transdifferentiation.
Although pancreatic exocrine acinar cells have the potential to transdifferentiate into pancreatic endocrine cells, the mechanisms are poorly understood. Here we report that intracellular signaling pathways, including those involving MAPK and phosphatidylinositol 3 (PI3)-kinase, are activated by enzymatic dissociation of pancreatic acinar cells and that spherical cell clusters are formed by cad...
متن کاملMonoclonal Antibody Production Against Vimentin by Whole Cell Immunization in a Mouse Model
Background: Pancreatic carcinoma is the fourth-leading cause of cancer death in the United States and due to its late presentation, only few patients would be candidates for the curative treatment of pancreactomy. Monoclonal antibodies have brought hope to targeted therapy.Objectives: To identify new biomarkers, a panel of monoclonal antibodies was genera...
متن کاملNestin expression in pancreatic exocrine cell lineages
Expression of nestin has been suggested to be a characteristic of pancreatic islet stem cells. To determine whether nestin is indeed expressed in such putative cells during embryonic development, or in the adult pancreas after injury, we performed a cell lineage analysis using two independent lines of transgenic mice encoding Cre recombinase under the control of rat nestin cis-regulatory sequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 132 16 شماره
صفحات -
تاریخ انتشار 2005