Strong Duality in Nonconvex Quadratic Optimization with Two Quadratic Constraints

نویسندگان

  • Amir Beck
  • Yonina C. Eldar
چکیده

We consider the problem of minimizing an indefinite quadratic function subject to two quadratic inequality constraints. When the problem is defined over the complex plane we show that strong duality holds and obtain necessary and sufficient optimality conditions. We then develop a connection between the image of the real and complex spaces under a quadratic mapping, which together with the results in the complex case lead to a condition that ensures strong duality in the real setting. Preliminary numerical simulations suggest that for random instances of the extended trust region subproblem, the sufficient condition is satisfied with a high probability. Furthermore, we show that the sufficient condition is always satisfied in two classes of nonconvex quadratic problems. Finally, we discuss an application of our results to robust least squares problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality

Abstract This paper presents a canonical duality theory for solving a general nonconvex 1 quadratic minimization problem with nonconvex constraints. By using the canonical dual 2 transformation developed by the first author, the nonconvex primal problem can be con3 verted into a canonical dual problem with zero duality gap. A general analytical solution 4 form is obtained. Both global and local...

متن کامل

Strong Duality for the CDT Subproblem: A Necessary and Sufficient Condition

In this paper we consider the problem of minimizing a nonconvex quadratic function, subject to two quadratic inequality constraints. As an application, such quadratic program plays an important role in the trust region method for nonlinear optimization; such problem is known as the CDT subproblem in the literature. The Lagrangian dual of the CDT subproblem is a Semidefinite Program (SDP), hence...

متن کامل

Convexity Properties Associated with Nonconvex Quadratic Matrix Functions and Applications to Quadratic Programming

We establish several convexity results which are concerned with nonconvex quadratic matrix (QM) functions: strong duality of quadratic matrix programming problems, convexity of the image of mappings comprised of several QM functions and the existence of a corresponding SLemma. As a consequence of our results, we prove that a class of quadratic problems involving several functions with similar m...

متن کامل

Canonical Duality Theory and Solutions to Constrained Nonconvex Quadratic Programming

This paper presents a perfect duality theory and a complete set of solutions to nonconvex quadratic programming problems subjected to inequality constraints. By use of the canonical dual transformation developed recently, a canonical dual problem is formulated, which is perfectly dual to the primal problem in the sense that they have the same set of KKT points. It is proved that the KKT points ...

متن کامل

Global Optimality Conditions for Quadratic Optimization Problems with Binary Constraints

We consider nonconvex quadratic optimization problems with binary constraints. Our main result identifies a class of quadratic problems for which a given feasible point is global optimal. We also establish a necessary global optimality condition. These conditions are expressed in a simple way in terms of the problem’s data. We also study the relations between optimal solutions of the nonconvex ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2006