Design of an organic redox mediator and optimization of an organic counter electrode for efficient transparent bifacial dye-sensitized solar cells.

نویسندگان

  • Xiong Li
  • Zhiliang Ku
  • Yaoguang Rong
  • Guanghui Liu
  • Linfeng Liu
  • Tongfa Liu
  • Min Hu
  • Ying Yang
  • Heng Wang
  • Mi Xu
  • Peng Xiang
  • Hongwei Han
چکیده

A new thiolate/disulfide mediator was designed and synthesized by employing DFT calculations as a guide. It possesses high transparency to visible light, a very attractive feature for bifacially active transparent DSCs that require a highly transparent counter electrode (CE). Compared to the reported and most promising thiolate/disulfide mediator T(-)/T(2), this new analogous mediator produced a major enhancement in open circuit potential (V(OC)) by about 40 mV and correspondingly a higher power conversion efficiency (η) for DSCs. Furthermore, a highly uniform and transparent (transmittance > 91%) poly(3,4-ethylenedioxythiophene) (PEDOT(BE)) CE was prepared and could efficiently catalyze the reduction of the disulfide. Based on the novel transparent redox couple and PEDOT(BE) CE, a new type of iodine-free and Pt-free transparent bifacial DSC was successfully fabricated. This new bifacial device could not only yield a promising front-illuminated η of 6.07%, but also produce an attractive η as high as 4.35% for rear-side irradiation, which exceeds the rear-illuminated η of 3.93% achieved for the same type of device, employing the dark-colored I(-)/I(3)(-) electrolyte.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells

Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode  generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes  have shown significant properties such...

متن کامل

Investigation the effect of substrate photo-electrode based on screen method on performance of dye-sensitized solar cells

In this paper we studied preparation of working films of dye-sensitized solar cells using screen printed method. The organic dye based on phenoltiazine with cyanoacrylic acid as the electron donor group utilized as photosensitizer. Fluorine-doped thin oxide FTO coated glass is transparent electrically conductive and ideal for use in dye-sensitized solar cells. FTO glass was coated by screen pri...

متن کامل

Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency.

In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I(-)/I3(-) redox couples. Because of the high optical transparency, e...

متن کامل

Application of azo dye as sensitizer in dye-sensitized solar cells

An azo dye used as photosensitizers in Dye-sensitized solar cells DSSCs. Azo dyes economically superior to organometallic dyes because they are color variation and cheap. The spectrophotometric evaluation of an azo dye in solution and on a TiO2 substrate show that the dye form J-aggregation on the nanostructured TiO2 substrate. Oxidation potential measurements for used azo dyes ensured an energ...

متن کامل

Investigation of Organic Compounds as Photosensitizer for Dye Sensitized Solar Cells

Two organic compounds (SC-23=(E)-2-Cyano-3-(2,3-dimethoxyphenyl) acrylic acid and SC-25=(E)-2-Cyano-3-(2,5-dimethoxyphenyl) acrylic acid) involving methoxy groups as the electron donor and cyanoacrylic acid group as the electron acceptor have been investigated for dye sensitized solar cells. They shows a short-circuit current density (Jsc) of 2.08 and 1.81 mA cm-2, an open circuit voltage (Voc)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 41  شماره 

صفحات  -

تاریخ انتشار 2012