Large Deviations for Semiflows over a Non-uniformly Expanding Base
نویسنده
چکیده
A. We obtain a large deviation bound for continuous observables on suspension semiflows over a non-uniformly expanding base transformation with non-flat singularities or criticalities, where the roof function defining the suspension behaves like the logarithm of the distance to the singular/critical set of the base map. That is, given a continuous function we consider its space average with respect to a physical measure and compare this with the time averages along orbits of the semiflow, showing that the Lebesgue measure of the set of points whose time averages stay away from the space average tends to zero exponentially fast as time goes to infinity. Suspension semiflows model the dynamics of flows admitting cross-sections, where the dynamics of the base is given by the Poincaré return map and the roof function is the return time to the cross-section. The results are applicable in particular to semiflows modeling the geometric Lorenz attractors and the Lorenz flow, as well as other semiflows with multidimensional non-uniformly expanding base with non-flat singularities and/or criticalities under slow recurrence rate conditions to this singular/critical set. We are also able to obtain exponentially fast escape rates from subsets without full measure.
منابع مشابه
Large Deviations Bounds for Non-uniformly Hyperbolic Maps and Weak Gibbs Measures
We establish bounds for the measure of deviation sets associated to continuous observables with respect to weak Gibbs measures. Under some mild assumptions, we obtain upper and lower bounds for the measure of deviation sets of some non-uniformly expanding maps, including quadratic maps and robust multidimensional non-uniformly expanding local diffeomorphisms.
متن کاملJa n 20 06 LARGE DEVIATIONS FOR NON - UNIFORMLY EXPANDING MAPS
We obtain large deviation results for non-uniformly expanding maps with non-flat singularities or criticalities and for partially hy-perbolic non-uniformly expanding attracting sets. That is, given a continuous function we consider its space average with respect to a physical measure and compare this with the time averages along orbits of the map, showing that the Lebesgue measure of the set of...
متن کاملUniform Weak Implies Uniform Strong Persistence for Non-autonomous Semiflows
It is shown that, under two additional assumptions, uniformly weakly persistent semiflows are also uniformly strongly persistent even if they are non-autonomous. This result is applied to a time-heterogeneous model of S-I-R-S type for the spread of infectious childhood diseases. If some of the parameter functions are almost periodic, an almost sharp threshold result is obtained for uniform stro...
متن کاملSome New Analytical Techniques for Duffing Oscillator with Very Strong Nonlinearity
The current paper focuses on some analytical techniques to solve the non-linear Duffing oscillator with large nonlinearity. Four different methods have been applied for solution of the equation of motion; the variational iteration method, He’s parameter expanding method, parameterized perturbation method, and the homotopy perturbation method. The results reveal that approxim...
متن کامل2 00 6 Large Deviations for Non - Uniformly Expanding Maps
We obtain large deviation results for non-uniformly expanding maps with non-flat singularities or criticalities and for partially hy-perbolic non-uniformly expanding attracting sets. That is, given a continuous function we consider its space average with respect to a physical measure and compare this with the time averages along orbits of the map, showing that the Lebesgue measure of the set of...
متن کامل