Chemistry of collagen cross-links: glucose-mediated covalent cross-linking of type-IV collagen in lens capsules.
نویسندگان
چکیده
The incubation of lens capsules with glucose in vitro resulted in changes in the mechanical and thermal properties of type-IV collagen consistent with increased cross-linking. Differential scanning calorimetry (d.s.c.) of fresh lens capsules showed two major peaks at melting temperatures Tm 1 and Tm 2 at approx. 54 degrees C and 90 degrees C, which can be attributed to the denaturation of the triple helix and 7S domains respectively. Glycosylation of lens capsules in vitro for 24 weeks caused an increase in Tm 1 from 54 degrees C to 61 degrees C, while non-glycosylated, control incubated capsules increased to a Tm 1 of 57 degrees C. The higher temperature required to denature the type-IV collagen after incubation in vitro suggested increased intermolecular cross-linking. Glycosylated lens capsules were more brittle than fresh samples, breaking at a maximum strain of 36.8 +/- 1.8% compared with 75.6 +/- 6.3% for the fresh samples. The stress at maximum strain (or 'strength') was dramatically reduced from 12.0 to 4.7 N.mm.mg-1 after glycosylation in vitro. The increased constraints within the system leading to loss of strength and increased brittleness suggested not only the presence of more cross-links but a difference in the location of these cross-links compared with the natural lysyl-aldehyde-derived cross-links. The chemical nature of the fluorescent glucose-derived cross-link following glycosylation was determined as pentosidine, at a concentration of 1 pentosidine molecule per 600 collagen molecules after 24 weeks incubation. Pentosidine was also determined in the lens capsules obtained from uncontrolled diabetics at a level of about 1 per 100 collagen molecules. The concentration of these pentosidine cross-links is far too small to account for the observed changes in the thermal and mechanical properties following incubation in vitro, clearly indicating that another as yet undefined, but apparently more important cross-linking mechanism mediated by glucose is taking place.
منابع مشابه
Glucose-mediated cross-linking of collagen in rat tendon and skin.
BACKGROUND Cross-linking of macromolecules like collagen plays an important role in the development of complications in diabetes and ageing. One of the underlying mechanisms of this cross-linking is the formation of advanced glycation endproducts (AGEs). METHODS In this study, we assessed the use of differential scanning calorimetry (DSC) for the determination of these cross-links and the eff...
متن کاملIntermolecular cross-links in reconstituted collagen fibrils. Evidence for the nature of the covalent bonds.
Reduction of reconstituted native type collagen fibrils with sodium borohydride produced a firmly cross-linked polymer as determined by solubility, thermal shrinkage and dissolution, and renaturation studies, and by examination of the denatured protein by ultracentrifugation, gel filtration, polyacrylamide electrophoresis, and carboxymethyl cellulose chromatography. Maximum reduction occurred w...
متن کاملThe Role of Type IV Collagen in Developing Lens in Mouse Fetuses
Objective(s) Extracellular matrix (ECM) and basement membrane (BM) play important roles in many developmental processes during development and after birth. Among the components of the BM, collagen fibers specially type IV are the most important parts. The aim of this study was to determine the time when collagen type IV appears in the BM of lens structure during mouse embryonic development. M...
متن کاملCollagen type IX from human cartilage: a structural profile of intermolecular cross-linking sites.
Type IX collagen, a quantitatively minor collagenous component of cartilage, is known to be associated with and covalently cross-linked to type II collagen fibrils in chick and bovine cartilage. Type IX collagen molecules have also been shown to form covalent cross-links with each other in bovine cartilage. In the present study we demonstrate by structural analysis and location of cross-linking...
متن کاملIdentification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding.
Type IX collagen functions in covalent cross-linkage to type II collagen in cartilage (Eyre, D. R., Apone, S., Wu, J. J., Ericsson, L. H., and Walsh, K. A. (1987) FEBS Lett. 220, 337-341). To understand this molecular relationship better, an analysis of all cross-linking sites labeled by [3H]borohydride was undertaken using the protein prepared from fetal bovine cartilage. Sequence analysis of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 296 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1993