Zoledronic acid inhibits the pentose phosphate pathway through attenuating the Ras-TAp73-G6PD axis in bladder cancer cells.

نویسندگان

  • Xiaolin Wang
  • Guang Wu
  • Guangxin Cao
  • Lei Yang
  • Haifei Xu
  • Jian Huang
  • Jianquan Hou
چکیده

Zoledronic acid (ZA) is the current standard of care for the therapy of patients with bone metastasis or osteoporosis. ZA inhibits the prenylation of small guanosine‑5'-triphosphate (GTP)‑binding proteins, such as Ras, and thus inhibit Ras signaling. The present study demonstrated that ZA inhibited cell proliferation and the pentose phosphate pathway (PPP) in bladder cancer cells. In addition, the expression of glucose‑6‑phosphate dehydrogenase (G6PD, the rate‑limiting enzyme of the PPP) was found to be inhibited by ZA. Furthermore, the stability of TAp73, which activates the expression G6PD was decreased in zoledronic acid treated cells. Decreased levels of Ras‑GTP and phosphorylated‑extracellular signal-regulated kinase 1/2 were also observed following treatment with ZA. This may be due to the fact that activated Ras was reported to stabilize TAp73 inducing its accumulation. The inhibition of Ras activity by PT inhibitor II also significantly reduced the levels of TAp73 and G6PD and the PPP flux. Moreover, knockdown of TAp73, attenuated the PPP flux and eliminated the affection of ZA on the PPP flux. In conclusion, it was proposed that ZA can inhibit stability of TAp73 and attenuate the PPP via blocking Ras signaling in bladder cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aspirin inhibits glucose-6-phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites

Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer...

متن کامل

Molecular Identification of the Most Prevalent Mutation of Glucose-6-Phosphate Dehydrogenase Gene in Deficient Patients in Sistan and Balochestan Province of Iran

Glucose-6-phosphate dehydrogenase (G6PD) in humans is an X-chromosome-linked disorder and housekeeping enzyme, vital for the survival of every cell. It catalyses the oxidation of glucose-6-phosphate to 6-phospho gluconate in the first committed step of the pentose phosphate pathway, which provides cells with pentoses and reducing power in the form of NADPH. NADPH is required to protect the cell...

متن کامل

Molecular Identification of the Most Prevalent Mutations of Glucose-6-Posphate Dehydrogenase (G6PD) Gene in Deficient Patients in Khorasan Province of Iran

Glucose-6-phosphate dehydrogenase (G6PD) enzyme catalyses the first step in pentose phosphate pathway (conversion of glucose-6-phosphat to 6-phospho gluconat) which provides cells with pentoses and reduction power in the form of NADPH. In the present study we have analyzed the G6PD gene mutations in 76 patients with a history of favism in Khorasan province in Iran. DNA samples were analyzed for...

متن کامل

Histone deacetylase inhibitor-induced cancer stem cells exhibit high pentose phosphate pathway metabolism

PURPOSE We recently demonstrated that histone deacetylase (HDAC) inhibitors can "reprogram" differentiated triple-negative breast cancer cells to become quiescent stem-like cancer cells. We hypothesized that the metabolic state of such cells differs from that of their differentiated progeny. RESULTS In untreated cells, glucose uptake was higher in ALDH+ cells than in ALDH- cells (p = 0.01) bu...

متن کامل

Molecular Identification of the Most Prevalent Mutations of Glucose-6-Phosphate Dehydrogenase (G6PD) in Fars and Isfahan of Iran

Glucose-6-phosphate dehydrogenase (G6PD) in humans is in X-linked disorder, housekeeping enzyme and vital for the survival of every cell. It catalyses the oxidation of glucose-6-phosphate to 6-phospho Gluconat in the first committed step of the pentose phosphate pathway, which provides cells with pentoses and reducing power in the form of NADPH. NADPH is required to protect the cells against ox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular medicine reports

دوره 12 3  شماره 

صفحات  -

تاریخ انتشار 2015