Structure and stability of DNA containing an aristolactam II-dA lesion: implications for the NER recognition of bulky adducts
نویسندگان
چکیده
Aristolochic acids I and II are prevalent plant toxicants found in the Aristolochiaceae plant family. Metabolic activation of the aristolochic acids leads to the formation of a cyclic N-hydroxylactam product that can react with the peripheral amino group of purine bases generating bulky DNA adducts. These lesions are mutagenic and established human carcinogens. Interestingly, although AL-dG adducts progressively disappear from the DNA of laboratory animals, AL-dA lesions has lasting persistence in the genome. We describe here NMR structural studies of an undecameric duplex damaged at its center by the presence of an ALII-dA adduct. Our data establish a locally perturbed double helical structure that accommodates the bulky adduct by displacing the counter residue into the major groove and stacking the ALII moiety between flanking bases. The presence of the ALII-dA perturbs the conformation of the 5'-side flanking base pair, but all other pairs of the duplex adopt standard conformations. Thermodynamic studies reveal that the lesion slightly decreases the energy of duplex formation in a sequence-dependent manner. We discuss our results in terms of its implications for the repair of ALII-dA adducts in mammalian cells.
منابع مشابه
Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts
Exposure to aristolochic acid (AA), a component of Aristolochia plants used in herbal remedies, is associated with chronic kidney disease and urothelial carcinomas of the upper urinary tract. Following metabolic activation, AA reacts with dA and dG residues in DNA to form aristolactam (AL)-DNA adducts. These mutagenic lesions generate a unique TP53 mutation spectrum, dominated by A:T to T:A tra...
متن کاملThe human DNA repair factor XPC-HR23B distinguishes stereoisomeric benzo[a]pyrenyl-DNA lesions.
Benzo[a]pyrene (B[a]P), a known environmental pollutant and tobacco smoke carcinogen, is metabolically activated to highly tumorigenic B[a]P diol epoxide derivatives that predominantly form N(2)-guanine adducts in cellular DNA. Although nucleotide excision repair (NER) is an important cellular defense mechanism, the molecular basis of recognition of these bulky lesions is poorly understood. In ...
متن کاملQuantitative Determination of Aristolochic Acid-derived Dna Adducts in Rats Using P-postlabeling/polyacrylamide Gel Electrophoresis Analysis
Aristolochic acids (AA) are nephrotoxic and carcinogenic nitroaromatic compounds produced by the Aristolochiaceae family of plants. Ingestion of these phytotoxins by humans results in a syndrome known as AA nephropathy, characterized by renal tubulointerstitial fibrosis and upper urothelial cancer. After activation by cellular enzymes, AA I and II react with DNA to form covalent adducts and as ...
متن کاملCarcinogenic and nephrotoxic alkaloids aristolochic acids upon activation by NADPH : cytochrome P450 reductase form adducts found in DNA of patients with Chinese herbs nephropathy.
Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, has been found to be implicated in an unique type of renal fibrosis, designated Chinese herbs nephropathy (CHN), and associated with the development of urothelial cancer in CHN patients. Understanding, which enzymes are involved in AA activation and/or detoxication is important in the assessment of individual susceptibili...
متن کاملNew synthetic substrates of mammalian nucleotide excision repair system
DNA probes for the studies of damaged strand excision during the nucleotide excision repair (NER) have been designed using the novel non-nucleosidic phosphoramidite reagents that contain N-[6-(9-antracenylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nAnt) and N-[6-(5(6)-fluoresceinylcarbamoyl)hexanoyl]-3-amino-1,2-propandiol (nFlu) moieties. New lesion-imitating adducts being inserted into DNA s...
متن کامل