Triangulating a Polygon in Parallel

نویسنده

  • Michael T. Goodrich
چکیده

In this paper we present a.n efficient pa.ra.Ilel algorithm. for polygon tria.ngu.Ia.tion. The algo-rithm we present runs in O(logn) time using D(n) processors, which is optimal if the polygon is allowed to contain holes. This improves the previous parallel complexity bounds for this problem by a log n factor. If we are also given a trapezoidal decomposition of the polygon as input, then we can triangulate the polygon in O(logn) time using only O(n/logn} processors. This immediately implies that we can triangulate a monotone polygon in O(logn) time using D{n/logn) processors, which is optimal All of our results are for the CREW PRAM computational model

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experiments on Parallel Polygon Triangulation Using Ear Clipping

We present an experimental study of different strategies for triangulating polygons in parallel. As usual, we call three consecutive vertices of a polygon an ear if the triangle that is spanned by them is completely inside of the polygon. Extensive tests on thousands of sample polygons indicate that most polygons have a linear number of ears. This experimental result suggests that polygon-trian...

متن کامل

Efficient Geometric Algorithms on the EREW PRAM

We present a technique that can be used to obtain efficient parallel algorithms in the EREW-PRAM computational model. This technique enables us to optimally solve a number of geometric problems in O(logn) time using O(n/logn) EREW-PRAM processors, where n is the input size. These problerns include: computing the convex hull oCa sorted point set in the plane, computing the convex hull oCa simple...

متن کامل

Testing a Simple Polygon for Monotonicity Optimality in Parallel

Sumanta Guhat We show that, in parallel, an n-vertex simple polygon can be tested for monotonicity optimally in O(logn) time using O(n/logn) EREW PRAM processors, and we present two different optimal parallel algorithms for solving this problem. OUf result leads to an optimal parallcl algorithm for triangulating simple polygons that runs in O(logn) time using O(n/logn) EREW PRA!\I processors if...

متن کامل

Planar Separators and Parallel Polygon Triangulation

We show how to construct an O p n separator decomposition of a planar graph G in O n time Such a decomposition de nes a binary tree where each node corresponds to a subgraph of G and stores an O p n separator of that subgraph We also show how to construct an O n way decomposition tree in parallel in O log n time so that each node corresponds to a subgraph of G and stores an O n separator of tha...

متن کامل

Triangulating a Simple Polygon in Linear Time

Triangulating a simple polygon has been one of the most outstanding open problems in two-dimensional computational geometry. It is a basic primitive in computer graphics and, generally, seems the natural preprocessing step for most nontrivial operations on simple polygons [5,13]. Recall that to triangulate a polygon is t o partition it into triangles without adding any new vertices. Despite its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Algorithms

دوره 10  شماره 

صفحات  -

تاریخ انتشار 1989