An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils.

نویسندگان

  • D J Beerling
  • B H Lomax
  • D L Royer
  • G R Upchurch
  • L R Kump
چکیده

The end-Cretaceous mass extinctions, 65 million years ago, profoundly influenced the course of biotic evolution. These extinctions coincided with a major extraterrestrial impact event and massive volcanism in India. Determining the relative importance of each event as a driver of environmental and biotic change across the Cretaceous-Tertiary boundary (KTB) crucially depends on constraining the mass of CO(2) injected into the atmospheric carbon reservoir. Using the inverse relationship between atmospheric CO(2) and the stomatal index of land plant leaves, we reconstruct Late Cretaceous-Early Tertiary atmospheric CO(2) concentration (pCO(2)) levels with special emphasis on providing a pCO(2) estimate directly above the KTB. Our record shows stable Late Cretaceous/Early Tertiary background pCO(2) levels of 350-500 ppm by volume, but with a marked increase to at least 2,300 ppm by volume within 10,000 years of the KTB. Numerical simulations with a global biogeochemical carbon cycle model indicate that CO(2) outgassing during the eruption of the Deccan Trap basalts fails to fully account for the inferred pCO(2) increase. Instead, we calculate that the postboundary pCO(2) rise is most consistent with the instantaneous transfer of approximately 4,600 Gt C from the lithic to the atmospheric reservoir by a large extraterrestrial bolide impact. A resultant climatic forcing of +12 W.m(-2) would have been sufficient to warm the Earth's surface by approximately 7.5 degrees C, in the absence of counter forcing by sulfate aerosols. This finding reinforces previous evidence for major climatic warming after the KTB impact and implies that severe and abrupt global warming during the earliest Paleocene was an important factor in biotic extinction at the KTB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leaf assemblages across the Cretaceous-Tertiary boundary in the Raton Basin, New Mexico and Colorado.

Analyses of leaf megafossil and dispersed leaf cuticle assemblages indicate that major ecologic disruption and high rates of extinction occurred in plant communities at the Cretaceous-Tertiary boundary in the Raton Basin. In diversity increase, the early Paleocene vegetational sequence mimics normal short-term ecologic succession, but on a far longer time scale. No difference can be detected be...

متن کامل

Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous.

Eudicot flowering plants comprise roughly 70% of land plant species diversity today, but their early evolution is not well understood. Fossil evidence has been largely restricted to their distinctive tricolpate pollen grains and this has limited our understanding of the ecological strategies that characterized their primary radiation. I describe megafossils of an Early Cretaceous eudicot from t...

متن کامل

Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study.

Pelagic ecosystem function is integral to global biogeochemical cycling, and plays a major role in modulating atmospheric CO2 concentrations (pCO2). Uncertainty as to the effects of human activities on marine ecosystem function hinders projection of future atmospheric pCO2 To this end, events in the geological past can provide informative case studies in the response of ecosystem function to en...

متن کامل

Explosive radiation of Malpighiales supports a mid-cretaceous origin of modern tropical rain forests.

Fossil data have been interpreted as indicating that Late Cretaceous tropical forests were open and dry adapted and that modern closed-canopy rain forest did not originate until after the Cretaceous-Tertiary (K/T) boundary. However, some mid-Cretaceous leaf floras have been interpreted as rain forest. Molecular divergence-time estimates within the clade Malpighiales, which constitute a large pe...

متن کامل

The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants

Because atmospheric carbon dioxide is the ultimate source of all land-plant carbon, workers have suggested that pCO2 level may exert control over the amount of C incorporated into plant tissues. However, experiments growing plants under elevated pCO2 in both chamber and field settings, as well as meta-analyses of ecological and agricultural data, have yielded a wide range of estimates for the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 12  شماره 

صفحات  -

تاریخ انتشار 2002