Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor.

نویسندگان

  • Elizabeth A Veal
  • Sarah J Ross
  • Panagiota Malakasi
  • Emma Peacock
  • Brian A Morgan
چکیده

We describe the characterization of Ybp1, a novel protein, in Saccharomyces cerevisiae, that is required for the oxidative stress response to peroxides. Ybp1 is required for H2O2-induced expression of the antioxidant encoding gene TRX2. Our data indicate that the effects of Ybp1 are mediated through the Yap1 transcription factor. Indeed, Ybp1 forms a stress-induced complex with Yap1 in vivo and stimulates the nuclear accumulation of Yap1 in response to H2O2 but not in response to the thiol-oxidizing agent diamide. The H2O2-induced nuclear accumulation of Yap1 is regulated by the oxidation of specific cysteine residues and is dependent on the thiol peroxidase Gpx3. Our data suggest that Ybp1 is required for the H2O2-induced oxidation of Yap1 and acts in the same pathway as Gpx3. Consequently, Ybp1 represents a novel class of stress regulator of Yap1. These data have important implications for the regulation of protein oxidation and stress responses in eukaryotes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast.

A redox reaction involving cysteine thiol-disulfide exchange is crucial for the intracellular monitoring of oxidation status. The yeast transcription factor Yap1 is activated by formation of a disulfide bond, which inhibits nuclear export in response to peroxide stress, with resultant enhancement of the nuclear localization of Yap1. A glutathione peroxidase-like protein, Gpx3, which has peroxir...

متن کامل

Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape.

AIMS As Candida albicans is the major fungal pathogen of humans, there is an urgent need to understand how this pathogen evades toxic reactive oxygen species (ROS) generated by the host immune system. A key regulator of antioxidant gene expression, and thus ROS resistance, in C. albicans is the AP-1-like transcription factor Cap1. Despite this, little is known regarding the intracellular signal...

متن کامل

Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal.

Redox reactions involving cysteine thiol-disulfide exchange are crucial for sensing intracellular levels of H(2)O(2). However, oxidation-sensitive dithiols are also sensitive to intracellular reducing agents, and disulfide bonds are thus transient. The yeast transcription factor Yap1 is activated by disulfide-induced structural changes in the nuclear export signal in a carboxy-terminal domain. ...

متن کامل

Chemical dissection of an essential redox switch in yeast.

Saccharomyces cerevisiae responds to elevated levels of hydrogen peroxide in its environment via a redox relay system comprising the thiol peroxidase Gpx3 and transcription factor Yap1. In this signaling pathway, a central unresolved question is whether cysteine sulfenic acid modification of Gpx3 is required for Yap1 activation in cells. Here we report that cell-permeable chemical probes, which...

متن کامل

A Thiol Peroxidase Is an H2O2 Receptor and Redox-Transducer in Gene Activation

The Yap1 transcription factor regulates hydroperoxide homeostasis in S. cerevisiae. Yap1 is activated by oxidation when hydroperoxide levels increase. We show that Yap1 is not directly oxidized by hydroperoxide. We identified the glutathione peroxidase (GPx)-like enzyme Gpx3 as a second component of the pathway, serving the role of sensor and transducer of the hydroperoxide signal to Yap1. When...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 33  شماره 

صفحات  -

تاریخ انتشار 2003