Comparative Transcriptional Analysis Reveals Differential Gene Expression between Asymmetric and Symmetric Zygotic Divisions in Tobacco
نویسندگان
چکیده
Asymmetric cell divisions occur widely during many developmental processes in plants. In most angiosperms, the first zygotic cell division is asymmetric resulting in two daughter cells of unequal size and with distinct fates. However, the critical molecular mechanisms regulating this division remain unknown. Previously we showed that treatment of tobacco zygotes with beta-glucosyl Yariv (βGlcY) could dramatically alter the first zygotic asymmetric division to produce symmetric two-celled proembryos. In the present study, we isolated zygotes and two-celled asymmetric proembryos in vivo by micromanipulation, and obtained symmetric, two-celled proembryos by in vitro cell cultures. Using suppression-subtractive hybridization (SSH) and macroarray analysis differential gene expression between the zygote and the asymmetric and symmetric two-celled proembryos was investigated. After sequencing of the differentially expressed clones, a total of 1610 EST clones representing 685 non-redundant transcripts were obtained. Gene ontology (GO) term analysis revealed that these transcripts include those involved in physiological processes such as response to stimulus, regulation of gene expression, and localization and formation of anatomical structures. A homology search against known genes from Arabidopsis indicated that some of the above transcripts are involved in asymmetric cell division and embryogenesis. Quantitative real-time PCR confirmed the up- or down-regulation of the selected candidate transcripts during zygotic division. A few of these transcripts were expressed exclusively in the zygote, or in either type of the two-celled proembryos. Expression analyses of select genes in different tissues and organs also revealed potential roles of these transcripts in fertilization, seed maturation and organ development. The putative roles of few of the identified transcripts in the regulation of zygotic division are discussed. Further functional work on these candidate transcripts will provide important information for understanding asymmetric zygotic division, generation of apical-basal polarity and cell fate decisions during early embryogenesis.
منابع مشابه
I-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming
a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...
متن کاملDifferential Expression of Alpha S1 Casein and Beta-Lactoglobulin Genes at Different Physiological stages of the Adani Goats Mammary Glands
Background: Milk proteins genes have been the focus of the researches as the candidate target genes that play a decisive role when animal breeding is desired.Objectives: In the present study, the transcriptional levels of Beta-lactoglobulin (BLG) and Alpha S1 casein (CSN1S1) genes were investigated during prenatal, milking and drying times in mammary glands of the Adani goats which showed...
متن کاملMolecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis.
The balance between maintenance and differentiation of stem cells is a central question in developmental biology. Development of stomata in Arabidopsis thaliana begins with de novo asymmetric divisions producing meristemoids, proliferating precursor cells with stem cell-like properties. The transient and asynchronous nature of the meristemoid has made it difficult to study its molecular charact...
متن کاملAsymmetric Transcript Discovery by RNA-seq in C. elegans Blastomeres Identifies neg-1, a Gene Important for Anterior Morphogenesis
After fertilization but prior to the onset of zygotic transcription, the C. elegans zygote cleaves asymmetrically to create the anterior AB and posterior P1 blastomeres, each of which goes on to generate distinct cell lineages. To understand how patterns of RNA inheritance and abundance arise after this first asymmetric cell division, we pooled hand-dissected AB and P1 blastomeres and performed...
متن کاملComparative transcriptome analysis between somatic embryos (SEs) and zygotic embryos in cotton: evidence for stress response functions in SE development.
As a product of asexual reproduction in plants, the somatic embryo (SE) differentiates into a new plantlet via a zygotic embryogenesis-like process. Here, we present the phenotypic and cellular differences between SEs and zygotic embryos (ZEs) revealed by histological section scanning using three parallel development stages of the two types of embryos of cotton (Gossypium hirsutum cv. YZ1), inc...
متن کامل