Oscillation-induced Blow-up to the Modified Camassa–holm Equation with Linear Dispersion
نویسندگان
چکیده
In this paper, we provide a blow-up mechanism to the modified Camassa-Holm equation with varying linear dispersion. We first consider the case when linear dispersion is absent and derive a finite-time blow-up result with an initial data having a region of mild oscillation. A key feature of the analysis is the development of the Burgers-type inequalities with focusing property on characteristics, which can be deduced from tracing the ratio between solution and its gradient. Using the continuity and monotonicity of the solutions, we then extend this blow-up criterion to the case of negative linear dispersion, and determine that the finite time blow-up can still occur if the initial momentum density is bounded below by the magnitude of the linear dispersion and the initial datum has a local mild-oscillation region. Finally, we demonstrate that in the case of non-negative linear dispersion the formation of singularities can be induced by an initial datum with a sufficiently steep profile. In contrast to the Camassa-Holm equation with linear dispersion, the effect of linear dispersion of the modified Camassa-Holm equation on the blow-up phenomena is rather delicate.
منابع مشابه
On the Blow-up of Solutions to the Integrable Modified Camassa–holm Equation
We derive conditions on the initial data, including cases where the initial momentum density is not of one sign, that produce blow-up of the induced solution to the modified integrable Camassa-Holm equation with cubic nonlinearity. The blow-up conditions are formulated in terms of the initial momentum density and the average initial energy.
متن کاملThe classification of traveling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion
Under the traveling wave transformation, Camassa-Holm equation with dispersion is reduced to an integrable ODE whose general solution can be obtained using the trick of one-parameter group. Furthermore combining complete discrimination system for polynomial, the classifications of all single traveling wave solutions to the Camassa-Holm equation with dispersion is obtained. In particular, an aff...
متن کاملOn Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method
The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...
متن کاملBlow-up of solution of an initial boundary value problem for a generalized Camassa-Holm equation
In this paper, we study the following initial boundary value problem for a generalized Camassa-Holm equation
متن کاملA small dispersion limit to the Camassa-Holm equation: A numerical study
In this paper we take up the question of a small dispersion limit for the Camassa–Holm equation. The particular limit we study involves a modification of the Camassa–Holm equation, seen in the recent theoretical developments by Himonas and Misiołek, as well as the first author, where well-posedness is proved in weak Sobolev spaces. This work led naturally to the question of how solutions actual...
متن کامل