Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics
نویسندگان
چکیده
The phyllosphere, which lato sensu consists of the aerial parts of plants, and therefore primarily, of the set of photosynthetic leaves, is one of the most prevalent microbial habitats on earth. Phyllosphere microbiota are related to original and specific processes at the interface between plants, microorganisms and the atmosphere. Recent -omics studies have opened fascinating opportunities for characterizing the spatio-temporal structure of phyllosphere microbial communities in relation with structural, functional, and ecological properties of host plants, and with physico-chemical properties of the environment, such as climate dynamics and trace gas composition of the surrounding atmosphere. This review will analyze recent advances, especially those resulting from environmental genomics, and how this novel knowledge has revealed the extent of the ecosystemic impact of the phyllosphere at the interface between plants and atmosphere. Highlights • The phyllosphere is one of the most prevalent microbial habitats on earth. • Phyllosphere microbiota colonize extreme, stressful, and changing environments. • Plants, phyllosphere microbiota and the atmosphere present a dynamic continuum. • Phyllosphere microbiota interact with the dynamics of volatile organic compounds and atmospheric trace gasses.
منابع مشابه
Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves
The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of fou...
متن کاملThe emerging role of autophagy in peroxisome dynamics and lipid metabolism of phyllosphere microorganisms
Eukaryotic microorganisms resident in the phyllosphere (above-ground, plant-surface environments) undergo dynamic changes in nutrient conditions and adapt their metabolic pathways during proliferation or in the course of infection of host plants. Some of these metabolic switches are accomplished by regulation of organelle abundance. Recent studies have shown that autophagy plays a major role in...
متن کاملInfluence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملPesticides on Yeasts Colonizing Leaves
All aerial plant surfaces are inhabited by diverse assemblages of microorganisms, including bacteria, fi lamentous fungi, yeasts, and algae. These organisms have profound effects on plant health and thus impact on the ecosystem (Lindow and Brandl, 2003). The yeasts form a major component of the population on leaves (Inácio et al., 2002). Leaf surfaces are colonized by members of several genera ...
متن کاملCommunity proteogenomics reveals insights into the physiology of phyllosphere bacteria.
Aerial plant surfaces represent the largest biological interface on Earth and provide essential services as sites of carbon dioxide fixation, molecular oxygen release, and primary biomass production. Rather than existing as axenic organisms, plants are colonized by microorganisms that affect both their health and growth. To gain insight into the physiology of phyllosphere bacteria under in situ...
متن کامل