A dual-stage method for lesion segmentation on digital mammograms.
نویسندگان
چکیده
Mass lesion segmentation on mammograms is a challenging task since mass lesions are usually embedded and hidden in varying densities of parenchymal tissue structures. In this article, we present a method for automatic delineation of lesion boundaries on digital mammograms. This method utilizes a geometric active contour model that minimizes an energy function based on the homogeneities inside and outside of the evolving contour. Prior to the application of the active contour model, a radial gradient index (RGI)-based segmentation method is applied to yield an initial contour closer to the lesion boundary location in a computationally efficient manner. Based on the initial segmentation, an automatic background estimation method is applied to identify the effective circumstance of the lesion, and a dynamic stopping criterion is implemented to terminate the contour evolution when it reaches the lesion boundary. By using a full-field digital mammography database with 739 images, we quantitatively compare the proposed algorithm with a conventional region-growing method and an RGI-based algorithm by use of the area overlap ratio between computer segmentation and manual segmentation by an expert radiologist. At an overlap threshold of 0.4, 85% of the images are correctly segmented with the proposed method, while only 69% and 73% of the images are correctly delineated by our previous developed region-growing and RGI methods, respectively. This resulting improvement in segmentation is statistically significant.
منابع مشابه
A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images
Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...
متن کاملBreast abnormalities segmentation using the wavelet transform coefficients aggregation
Introduction: Breast cancer is the most common cancer among women in the world. The automatic detection of masses in digital mammograms is a challenging task and a major step in the development of breast cancer CAD systems. In this study, we introduce a new method for automatic detection of suspicious mass candidate (SMC) regions in a mammogram. Methods: Mammography is widely used for the early...
متن کاملA Novel Method for Skin Lesion Segmentation
Skin cancer has been the most usual and illustrates 50% of all new cancers detected each year. If they detected at an early stage, treatment can become simple and economically. Accurate skin lesion segmentation is important in automated early skin cancer detection and diagnosis systems. The aim of this study is to provide an effective approach to detect the skin lesion border on a purposed imag...
متن کاملA Novel Method for Skin Lesion Segmentation
Skin cancer has been the most usual and illustrates 50% of all new cancers detected each year. If they detected at an early stage, treatment can become simple and economically. Accurate skin lesion segmentation is important in automated early skin cancer detection and diagnosis systems. The aim of this study is to provide an effective approach to detect the skin lesion border on a purposed imag...
متن کاملMultiscale Segmentation and Enhancement in Mammograms
A multiscale method for segmenting and enhancing lesions of various sizes in mammograms is presented. The method uses two stages. The first stage applies a multiscale automatic threshold estimator based on histogram moments to segment the mammogram at multilevels. The second stage converts the segmented image using pseudo-colour mapping to produce a colour image. An algorithm is presented as we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 34 11 شماره
صفحات -
تاریخ انتشار 2007