Kobayashi–royden vs. Hahn Pseudometric in C 2

نویسنده

  • Witold Jarnicki
چکیده

We give a characterization of all cartesian products D1 × D2 ⊂ C for which the Kobayashi–Royden and Hahn pseudometrics coincide. In particular, we show that there exist domains in C for which Kobayashi–Royden and Hahn pseudometrics are different.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Zero Set of the Kobayashi–royden Pseudometric of the Spectral Unit Ball

Given A ∈ Ωn, the n-dimensional spectral unit ball, we show that B is a ”generalized” tangent vector at A to an entire curve in Ωn if and only if B is in the tangent cone CA to the isospectral variety at A. If B 6∈ CA, then the Kobayashi–Royden pseudometric is positive at (A;B). In the case of Ω3, the zero set of this metric is completely described.

متن کامل

Estimates of the Kobayashi-royden Metric in Almost Complex Manifolds

We establish a lower estimate for the Kobayashi-Royden infinitesimal pseudometric on an almost complex manifold (M, J) admitting a bounded strictly plurisubharmonic function. We apply this result to study the boundary behaviour of the metric on a strictly pseudoconvex domain in M and to give a sufficient condition for the complete hyperbolicity of a domain in (M, J).

متن کامل

Estimates of the Kobayashi Metric on Almost Complex Manifolds

We establish a lower estimate for the Kobayashi-Royden infinitesimal pseudometric on an almost complex manifold (M, J) admitting a bounded strictly plurisubharmonic function. We apply this result to study the boundary behaviour of the metric on a strictly pseudoconvex domain in M and to give a sufficient condition for the complete hyperbolicity of a domain in (M, J). Finally we obtain the regul...

متن کامل

Pseudoconvex Regions of Finite D’angelo Type in Four Dimensional Almost Complex Manifolds

Let D be a J-pseudoconvex region in a smooth almost complex manifold (M, J) of real dimension four. We construct a local peak J-plurisubharmonic function at every point p ∈ bD of finite D’Angelo type. As applications we give local estimates of the Kobayashi pseudometric, implying the local Kobayashi hyperbolicity of D at p. In case the point p is of D’Angelo type less than or equal to four, or ...

متن کامل

Kobayashi pseudometric on hyperkähler manifolds

The Kobayashi pseudometric on a complex manifold M is the maximal pseudometric such that any holomorphic map from the Poincaré disk to M is distance-decreasing. Kobayashi has conjectured that this pseudometric vanishes on Calabi-Yau manifolds. Using ergodicity of complex structures, we prove this result for any hyperkähler manifold if it admits a deformation with a Lagrangian fibration, and its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000