Error Control Codes, Information Theory and Applied Cryptography Codes de contrôle d’erreurs, théorie de l’information et cryptographie appliquée (Org: Aiden Bruen (Calgary) and/et David Wehlau (Queens; RMC))

نویسنده

  • TIM ALDERSON
چکیده

For n ≥ k, an (n, k, d)q-code C is a collection of q n-tuples (or codewords) over an alphabet A of size q such that the minimum (Hamming) distance between any two codewords of C is d. For such a code, the Singleton bound (|C| ≤ |A|n−d+1) gives d ≤ n− k + 1. The Singleton defect of C, S(C), is defined by S(C) = n− k + 1− d. A code C ′ obtained by deleting some fixed coordinate from each codeword of C is called a punctured code of C. In the case that S(C ′) = S(C), C is said to be an extension of C ′, equivalently, C ′ is said to be extendable to the code C. A code is maximal if it admits no extensions. In the special case that A = GF (q) and C is a vector space of dimension k, C is a linear (n, k, d)q-code. C then has an associated generator matrix G whose columns can be considered as a projective multiset G of n points in PG(k−1, q) at most n−d per hyperplane-called a projective system associated with C. If the points in G are distinct (so that essentially there are no repeated coordinates), C is a projective code. Hence, complete (n, r)-arcs in PG(k− 1, q) and projective (n, k, n− r)q-codes that admit no projective extensions are equivalent objects. This begs the question: Is a projective code corresponding to a complete arc necessarily maximal? We show that projective codes of reasonable length admit only projective extensions. Many examples of large complete arcs exist; our results show that in many cases the corresponding codes are maximal. The methods used are based on the Bruen–Silverman model of linear codes utilizing coprimitive sets as well as the theory of Rédei blocking sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long Binary Linear Codes and Large Caps in Projective Space

We obtain, in principle, a complete classification of all long inextendable binary linear codes. Several related constructions and results are presented.

متن کامل

Codes correcteurs

Il faut distinguer les codes correcteurs d’erreurs de la cryptographie. Les codes correcteurs d’erreur servent à protéger l’information d’erreurs de transmission ou de stockage. On peut trouver dans ce texte, avec des références bibliographiques précises, des idées d’exposés ou d’applications pour plusieurs leçons portant sur l’algèbre linéaire ou les polynômes. (Les titres des leçons sont ceux...

متن کامل

Caps and Colouring Steiner Triple Systems

Hill [6] showed that the largest cap in PG(5, 3) has cardinality 56. Using this cap it is easy to construct a cap of cardinality 45 in AG(5, 3). Here we show that the size of a cap in AG(5, 3) is bounded above by 48. We also give an example of three disjoint 45-caps in AG(5, 3). Using these two results we are able to prove that the Steiner triple system AG(5, 3) is 6-chromatic, and so we exhibi...

متن کامل

Partitioning Quadrics, Symmetric Group Divisible Designs and Caps

Using partitionings of quadrics we give a geometric construction of certain symmetric group divisible designs. It is shown that some of them at least are self-dual. The designs that we construct here relate to interesting work — some of it very recent — by D. Jungnickel and by E. Moorhouse. In this paper we also give a short proof of an old result of G. Pellegrino concerning the maximum size of...

متن کامل

Binary Codes and Caps

The connection between maximal caps (sometimes called complete caps) and certain binary codes called quasi-perfect codes is described. We provide a geometric approach to the foundational work of Davydov and Tombak who have obtained the exact possible sizes of large maximal caps. A new self-contained proof of the existence and the structure of the largest maximal nonaffine cap in PG(n, 2) is giv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007