Spatiotemporal dynamics of OCT4 protein localization during preimplantation development in mice
نویسندگان
چکیده
Spatiotemporal expression of transcription factors is crucial for genomic reprogramming. Pou5f1 (Oct4) is an essential transcription factor for reprogramming. A recent study reported that OCT4A, which is crucial for establishment and maintenance of pluripotent cells, is expressed in oocytes, but maternal OCT4A is dispensable for totipotency induction. Whereas another study reported that OCT4B, which is not related to pluripotency, is predominantly expressed instead of OCT4A during early preimplantation phases in mice. To determine the expression states of OCT4 in murine preimplantation embryos, we conducted in-depth expression and functional analyses. We found that pluripotency-related OCT4 mainly localizes to the cytoplasm in early preimplantation phases, with no major nuclear localization until the 8-16-cell stage despite high expression in both oocytes and early embryos. RNA-sequencing analysis using oocytes and early preimplantation embryos could not identify the splice variants creating alternative forms of OCT4 protein. Forced expression of OCT4 in zygotes by the injection of polyadenylated mRNA clearly showed nuclear localization of OCT4 protein around 3-5-fold greater than physiological levels and impaired developmental competency in a dose-dependent manner. Embryos with modest overexpression of OCT4 could develop to the 16-cell stage; however, more than 50% of the embryos were arrested at this stage, similar to the results for OCT4 depletion. In contrast, extensive overexpression of OCT4 resulted in complete arrest at the 2-cell stage accompanied by downregulation of zygotically activated genes and repetitive elements related to the totipotent state. These results demonstrated that OCT4 protein localization was spatiotemporally altered during preimplantation development, and strict control of Oct4 protein levels was essential for proper totipotential reprogramming.
منابع مشابه
I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing
Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...
متن کاملOct-4 Regulates DNA Methyltransferase 1 (Dnmt1) Transcription by Direct Regulatory Element Binding
The transcription factor Oct4 plays a pivotal role for the development of mouse preimplantation embryo, and DNA methyltransferase 1 (Dnmt1) maintains the changes of DNA methylation during mammalian early embryonic development. However, little is known of the role of Oct4 in DNA methylation in mouse. In the present study, Kunming white mice were used as an animal model to elucidate the correlati...
متن کاملThe serine 106 residue within the N-terminal transactivation domain is crucial for Oct4 function in mice.
Pou5f1/Oct4 is a key transcription factor for the induction of pluripotency and totipotency in preimplantation mouse embryos. In mice, loss or gain of function experiments have demonstrated an important role for Oct4 in preimplantation and developmental ability. In this study, using mouse preimplantation embryos as a model for the evaluation of Oct4 function, we constructed Oct4 overexpression ...
متن کاملExpression of pluripotent stem cell markers in mouse uterine tissue during estrous cycle
It was assumed that uterine stem cells are responsible for the unique regenerative capacity of uterine. Therefore, the aim of the present study was to investigate the expression of the pluripotent stem cell markers in the mice uterine tissue during different stages of estrous cycles. Twelve virgin female NMRI mice (6 to 8 weeks old) were considered at proestrus, estrus, metestrus and diestrus a...
متن کاملEfficient Delivery of DNA and Morpholinos into Mouse Preimplantation Embryos by Electroporation
Mouse preimplantation development is characterized by three major transitions and two lineage segregations. Each transition or lineage segregation entails pronounced changes in the pattern of gene expression. Thus, research into the function of genes with obvious changes in expression pattern will shed light on the molecular basis of preimplantation development. We have described a simplified a...
متن کامل