On the Number of Linear Forms in Logarithms

نویسندگان

  • Youness Lamzouri
  • YOUNESS LAMZOURI
چکیده

Let n be a positive integer. In this paper we estimate the size of the set of linear forms b1 log a1 + b2 log a2 + ... + bn log an, where |bi| ≤ Bi and 1 ≤ ai ≤ Ai are integers, as Ai, Bi →∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the transcendence of certain Petersson inner products

‎We show that for all normalized Hecke eigenforms $f$‎ ‎with weight one and of CM type‎, ‎the number $(f,f)$ where $(cdot‎, ‎cdot )$ denotes‎ ‎the Petersson inner product‎, ‎is a linear form in logarithms and‎ ‎hence transcendental‎.

متن کامل

A Kit on Linear Forms in Three Logarithms

In this paper we give a general presentation of the results to be used to get a ‘good’ lower bound for a linear form in three logarithms of algebraic numbers in the so-called rational case. We recall the best existing general result — Matveev’s theorem — and we add a powerful new lower bound for linear forms in three logarithms. We treat in detail the ‘degenerate’ case, i.e. the case when the c...

متن کامل

Work of T . N . Shorey 3 2 Applications of Linear Form Estimates to Values of Polynomials , Recurrence Sequen

We state a number of important results which we owe to Tarlok Shorey. 1 Shorey’s Contributions to Linear Form Estimates and Some Applications One of the first results of Shorey concerns a sharpening of a theorem of Sylvester. Sylvester proved in 1892 that a product of k consecutive positive integers greater than k is divisible by a prime exceeding k. By combining a result of Jutila which depend...

متن کامل

A Hypergeometric Approach, Via Linear Forms Involving Logarithms, to Irrationality Criteria for Euler’s Constant

Using a hypergeometric function, we give necessary and sufficient conditions for irrationality of Euler’s constant, γ. The proof is by reduction to earlier criteria involving a Beukers-type double integral. We employ a method for constructing linear forms in 1, γ and logarithms from rational functions, via Nesterenko-type series.

متن کامل

Asymptotically Fast Discrete Logarithms in Quadratic Number Fields

This article presents algorithms for computing discrete logarithms in class groups of quadratic number elds. In the case of imaginary quadratic elds, the algorithm is based on methods applied by Hafner and McCurley HM89] to determine the structure of the class group of imaginary quadratic elds. In the case of real quadratic elds, the algorithm of Buchmann Buc89] for computation of class group a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006