Tannaka-krein Duality for Compact Groupoids Iii, Duality Theory

نویسنده

  • MASSOUD AMINI
چکیده

This is the last in a series of papers in which we generalized the Tannaka-Krein duality to compact groupoids. In [A1] we studied the representation theory of compact groupoids. In particular, we showed that irreducible representations have finite dimensional fibres. We also proved the Schur’s lemma, Gelfand-Raikov theorem and Peter-Weyl theorem for compact groupoids. In [A2] we studied the Fourier and Fourier-Plancherel transforms and their inverse transforms on compact groupoids. In this part we show how to recover a compact groupoid from its representation theory. This is done along the lines of the Tannaka duality for compact groups. We refer the interested reader to [JS] for a clear exposition of this theory. All over this paper we assume that G is compact and the Haar system on G is normalized. We put X = G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tannaka-krein Duality for Compact Groupoids I, Representation Theory

In a series of papers, we have shown that from the representation theory of a compact groupoid one can reconstruct the groupoid using the procedure similar to the Tannaka-Krein duality for compact groups. In this part we study continuous representations of compact groupoids. We show that irreducible representationshave finite dimensional fibres. We prove the Schur’s lemma, Gelfand-Raikov theore...

متن کامل

Tannaka-krein Duality for Compact Groupoids Ii, Fourier Transform

Abstract. In a series of papers, we have shown that from the representation theory of a compact groupoid one can reconstruct the groupoid using the procedure similar to the Tannaka-Krein duality for compact groups. In this part we study the Fourier and Fourier-Plancherel transforms and prove the Plancherel theorem for compact groupoids. We also study the central functions in the algebra of squa...

متن کامل

An Introduction to Tannaka Duality and Quantum Groups

The goal of this paper is to give an account of classical Tannaka duality [C⁄] in such a way as to be accessible to the general mathematical reader, and to provide a key for entry to more recent developments [⁄SR, DM⁄] and quantum groups [⁄D1⁄]. Expertise in neither representation theory nor category theory is assumed. Naively speaking, Tannaka duality theory is the study of the interplay which...

متن کامل

ar X iv : q - a lg / 9 50 70 18 v 1 2 0 Ju l 1 99 5 QUANTUM PRINCIPAL BUNDLES & TANNAKA - KREIN DUALITY THEORY

The structure of quantum principal bundles is studied, from the viewpoint of Tannaka-Krein duality theory. It is shown that if the structure quantum group is compact, principal G-bundles over a quantum space M are in a natural correspondence with certain contravariant functors defined on the category of finite-dimensional unitary representations of G, with the values in the category of finite p...

متن کامل

Tannaka-krein Duality for Hopf Algebroids

We develop the Tannaka-Krein duality for monoidal functors with target in the categories of bimodules over a ring. The Coend of such a functor turns out to be a Hopf algebroid over this ring. Using a result of [4] we characterize a small abelian, locally finite rigid monoidal category as the category of rigid comodules over a transitive Hopf algebroid.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003