Cuckoo Genetic Optimization Algorithm for Efficient Job Scheduling with Load Balance in Grid Computing

نویسنده

  • Rachhpal Singh
چکیده

Grid computing incorporates dispersed resources to work out composite technical, industrial, and business troubles. Thus a capable scheduling method is necessary for obtaining the objectives of grid. The disputes of parallel computing are commencing with the computing resources for the number of jobs and intricacy, craving, resource malnourishment, load balancing and efficiency. The risk stumbling upon parallel computing is the enthusiasm to scrutinize different optimization techniques to achieve the tasks without unsafe surroundings. Here Cuckoo Genetic Optimization Algorithm (CGOA) is established that was motivated from cuckoo optimization algorithm (COA) and genetic algorithm (GA) for task scheduling in parallel environment (grid computing system). This CGOA is implemented on parallel dealing out for effective scheduling of multiple tasks with less schedule length and load balance. Here transmission time is evaluated with number of job set. This is computed with the help of job-processor relationship. This technique handles the issues well and the results show that complexity, load balance and resource utilization are finely managed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Job Scheduling in Grid Computing with Cuckoo Optimization Algorithm

Computational grid is a hardware and software infrastructure that provides dependable, inclusive and credible to other computing capabilities. Grid computing intercommunicated with a set of computational resources on a large scale. Scheduling independent jobs is an important issues in such areas as computational grid. Scheduling is the process of assigning jobs to resources in order to achieve ...

متن کامل

Integrated modeling and solving the resource allocation problem and task scheduling in the cloud computing environment

Cloud computing is considered to be a new service provider technology for users and businesses. However, the cloud environment is facing a number of challenges. Resource allocation in a way that is optimum for users and cloud providers is difficult because of lack of data sharing between them. On the other hand, job scheduling is a basic issue and at the same time a big challenge in reaching hi...

متن کامل

Task Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids

In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...

متن کامل

AN EFFICIENT OPTIMIZATION PROCEDURE BASED ON CUCKOO SEARCH ALGORITHM FOR PRACTICAL DESIGN OF STEEL STRUCTURES

Different kinds of meta-heuristic algorithms have been recently utilized to overcome the complex nature of optimum design of structures. In this paper, an integrated optimization procedure with the objective of minimizing the self-weight of real size structures is simply performed interfacing SAP2000 and MATLAB® softwares in the form of parallel computing. The meta-heuristic algorithm chosen he...

متن کامل

Balanced Job Scheduling Based on Ant Algorithm for Grid Network

Job scheduling in grid computing is a very important problem. To utilize grids efficiently, we need a good job scheduling algorithm to assign jobs to resources in grids. The main scope of this paper is to propose a new Ant Colony Optimization (ACO) algorithm for balanced job scheduling in the Grid environment. To achieve the above goal, we will indicate a way to balance the entire system load w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016