M ar 2 00 4 Computing the level of a modular rigid Calabi - Yau threefold Luis

نویسنده

  • Luis V. Dieulefait
چکیده

In a previous article (cf. [DM]), the modularity of a large class of rigid Calabi-Yau threefolds was established. To make that result more explicit, we recall (and re-prove) a result of Serre giving a bound for the conductor of “integral” 2-dimensional compatible families of Galois representations and apply this result to give an algorithm that determines the level of a modular rigid Calabi-Yau threefold. We apply the algorithm to three examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

6 M ar 2 00 9 A modular quintic Calabi - Yau threefold of level 55 Edward

In this note we search the parameter space of Horrocks-Mumford quintic threefolds and locate a Calabi-Yau threefold which is modular, in the sense that the L-function of its middle-dimensional cohomology is associated to a classical modular form of weight 4 and level 55.

متن کامل

Existence of Nonelliptic mod Galois Representations for Every > 5 Luis

In [Shepherd-Barron and Taylor 97] it is shown that for = 3 and 5 every odd, irreducible, two-dimensional Galois representation of Gal(Q̄/Q) with values in F and determinant the cyclotomic character is “elliptic,” i.e., it agrees with the representation given by the action of Gal(Q̄/Q) on the -torsion points of an elliptic curve defined over Q. In this note we will show that this is false for eve...

متن کامل

Modular Calabi–yau Threefolds of Level Eight

If X̃ is a Calabi–Yau threefold defined over Q, and p is a good prime (i.e., a prime such that the reduction of X̃ mod p is nonsingular) then the map Frob∗p : H i ét(X̃,Ql) −→ H i ét(X̃,Ql) on l–adic cohomology induced by the geometric Frobenius morphism gives rise to l–adic Galois representations ρl,i : Gal(Q/Q) −→ GLbi(Ql). If a Calabi–Yau threefold X̃ is rigid (i.e., h(X̃) = 0 or equivalently b(X̃)...

متن کامل

A Modular Non-Rigid Calabi-Yau Threefold

We construct an algebraic variety by resolving singularities of a quintic Calabi-Yau threefold. The middle cohomology of the threefold is shown to contain a piece coming from a pair of elliptic surfaces. The resulting quotient is a two-dimensional Galois representation. By using the Lefschetz fixed-point theorem in étale cohomology and counting points on the variety over finite fields, this Gal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008