Quantitative Assessment of Image Segmentation Quality by Random Walk Relaxation Times
نویسندگان
چکیده
The purpose of image segmentation is to partition the pixel grid of an image into connected components termed segments such that (i) each segment is homogenous and (ii) for any pair of adjacent segments, their union is not homogenous. (If it were homogenous the segments should be merged). We propose a rigorous definition of segment homogeneity which is scale-free and adaptive to the geometry of segments. We motivate this definition using random walk theory and show how segment homogeneity facilitates the quantification of violations of the conditions (i) and (ii) which are referred to as under-segmentation and over-segmentation, respectively. We describe the theoretical foundations of our approach and present a proof of concept on a few natural images.
منابع مشابه
Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملAssessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملComparative Study on Various Random Walk Techniques for Left Ventricle Cavity Segmentation
Objective of image segmentation is to group regions with coherent characteristics. This paper presents a comparative study on Random walk techniques for Left ventricle segmentation. In this paper, LV cavity segmentation is demonstrated for each technique using multi-slice MR cardiac images. The quality of segmentation process is measured by comparing the resulted images of different Random walk...
متن کاملImage Segmentation using Commute Times
This paper exploits the properties of the commute time to develop a graphspectral method for image segmentation. Our starting point is the lazy random walk on the graph, which is determined by the heat-kernel of the graph and can be computed from the spectrum of the graph Laplacian. We characterise the random walk using the commute time between nodes, and show how this quantity may be computed ...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کامل