Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice.
نویسندگان
چکیده
Rice blast, caused by Magnaporthe grisea, is the most important fungal disease of cultivated rice worldwide. We have developed a strategy for creating disease resistance to M. grisea whereby pathogen-induced expression of the afp (antifungal protein) gene from Aspergillus giganteus occurs in transgenic rice plants. Here, we evaluated the activity of the promoters from three maize pathogenesis-related (PR) genes, ZmPR4, mpi, and PRms, in transgenic rice. Chimeric gene fusions were prepared between the maize promoters and the beta-glucuronidase reporter gene (gus A). Histochemical assays of GUS activity in transgenic rice revealed that the ZmPR4 promoter is strongly induced in response to fungal infection, treatment with fungal elicitors, and mechanical wounding. The ZmPR4 promoter is not active in the seed endosperm. The mpi promoter also proved responsiveness to fungal infection and wounding but not to treatment with elicitors. In contrast, no activity of the PRms promoter in leaves of transgenic rice was observed. Transgenic plants expressing the afp gene under the control of the ZmPR4 promoter were generated. Transformants showed resistance to M. grisea at various levels. Our results suggest that pathogen-inducible expression of the afp gene in rice plants may be a practical way for protection against the blast fungus. Most agricultural crop species suffer from a vast array of fungal diseases that cause severe yield losses all over the world. Rice blast, caused by the fungus Magnaporthe grisea (Herbert) Barr (anamorph Pyricularia grisea), is the most devastating disease of cultivated rice (Oryza sativa L.), due to its
منابع مشابه
A protein from the mold Aspergillus giganteus is a potent inhibitor of fungal plant pathogens.
A purified preparation of antifungal protein (AFP) from Aspergillus giganteus exhibited potent antifungal activity against the phytopathogenic fungi Magnaporthe grisea and Fusarium moniliforme, as well as the oomycete pathogen Phytophthora infestans. Under conditions of total inhibition of fungal growth, no toxicity of AFP toward rice protoplasts was observed. Additionally, application of AFP o...
متن کاملProbenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants.
Probenazole (PBZ) is the active ingredient of Oryzemate, an agrochemical which is used for the protection of rice plants from Magnaporthe grisea (blast fungus). While PBZ was reported to function upstream of salicylic acid (SA) in Arabidopsis, little is known about the mechanism of PBZ-induced resistance in rice. The role of SA in blast fungus resistance is also unclear. The recommended applica...
متن کاملIsolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea.
AIMS Isolation of bacterial antagonist for use in the biological control of phytopathogenic fungi like rice blast fungus, Magnaporthe grisea, and to further purify and characterize the antifungal molecule produced by the antagonist. METHODS AND RESULTS Bacterial antagonist exhibiting highest antifungal activity against the rice blast fungus M. grisea was isolated from soil and identified as B...
متن کاملActivity of the Antifungal Protein from Aspergillus giganteus Against Botrytis cinerea.
ABSTRACT Botrytis blight (gray mold), caused by Botrytis cinerea, is one of the most widely distributed diseases of ornamental plants. In geranium plants, gray mold is responsible for important losses in production. The mold Aspergillus giganteus is known to produce and secrete a basic low-molecular-weight protein, the antifungal protein (AFP). Here, the antifungal properties of the Aspergillus...
متن کاملPossible role of phytocassane, rice phytoalexin, in disease resistance of rice against the blast fungus Magnaporthe grisea.
In addition to momilactone, phytocassanes A through E (diterpene phytoalexins) were detected in rice leaves in fields suffering from rice blast. Furthermore, phytocassane accumulation was most abundant at the edges of necrotic lesions, indicating that the phytoalexins prevent subsequent spread of the fungus from the infected site. In pot experiments the pattern of phytocassane accumulation in r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant-microbe interactions : MPMI
دوره 18 9 شماره
صفحات -
تاریخ انتشار 2005