Reciprocal regulation of PKA and Rac signaling.
نویسندگان
چکیده
Activated G protein-coupled receptors (GPCRs) and receptor tyrosine kinases relay extracellular signals through spatial and temporal controlled kinase and GTPase entities. These enzymes are coordinated by multifunctional scaffolding proteins for precise intracellular signal processing. The cAMP-dependent protein kinase A (PKA) is the prime example for compartmentalized signal transmission downstream of distinct GPCRs. A-kinase anchoring proteins tether PKA to specific intracellular sites to ensure precision and directionality of PKA phosphorylation events. Here, we show that the Rho-GTPase Rac contains A-kinase anchoring protein properties and forms a dynamic cellular protein complex with PKA. The formation of this transient core complex depends on binary interactions with PKA subunits, cAMP levels and cellular GTP-loading accounting for bidirectional consequences on PKA and Rac downstream signaling. We show that GTP-Rac stabilizes the inactive PKA holoenzyme. However, β-adrenergic receptor-mediated activation of GTP-Rac-bound PKA routes signals to the Raf-Mek-Erk cascade, which is critically implicated in cell proliferation. We describe a further mechanism of how cAMP enhances nuclear Erk1/2 signaling: It emanates from transphosphorylation of p21-activated kinases in their evolutionary conserved kinase-activation loop through GTP-Rac compartmentalized PKA activities. Sole transphosphorylation of p21-activated kinases is not sufficient to activate Erk1/2. It requires complex formation of both kinases with GTP-Rac1 to unleash cAMP-PKA-boosted activation of Raf-Mek-Erk. Consequently GTP-Rac functions as a dual kinase-tuning scaffold that favors the PKA holoenzyme and contributes to potentiate Erk1/2 signaling. Our findings offer additional mechanistic insights how β-adrenergic receptor-controlled PKA activities enhance GTP-Rac-mediated activation of nuclear Erk1/2 signaling.
منابع مشابه
Interplay of PKA and Rac
Cellular membrane receptors sense environmental changes and relay the reshaped signal through spatially and temporally organized protein-protein interactions (PPI). Many of such PPI are transient and occur in a certain cell-dependent context. Molecular switches such as kinases and GTPases are engaged in versatile PPI. Recently, we have identified dynamic interaction and reciprocal regulation of...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملVASP is involved in cAMP-mediated Rac 1 activation in microvascular endothelial cells.
Accumulating evidence points to a significant role of vasodilator-stimulated phosphoprotein (VASP) in the maintenance of endothelial barrier functions. We have recently shown that impaired barrier functions in VASP-deficient microvascular myocardial endothelial cells (MyEnd VASP(-/-)) correlated with decreased Rac 1 activity. To further test the hypothesis that VASP is involved in regulation of...
متن کاملProtein kinase A regulates Rac and is required for the growth factor-stimulated migration of carcinoma cells.
Members of the Rho family of small GTPases, such as Rho and Rac, are required for actin cytoskeletal reorganization during the migration of carcinoma cells. Phosphodiesterases are necessary for this migration because they alleviate cAMP-dependent protein kinase (PKA)-mediated inhibition of RhoA (O'Connor, K. L., Shaw, L. M., and Mercurio, A. M. (1998) J. Cell Biol. 143, 1749-1760; O'Connor K. L...
متن کاملSequestering Rac with PKA confers cAMP control of cytoskeletal remodeling.
Rac GTPases promote formation of membrane ruffles, yet how key effectors of this small GTPase operate in response to intracellular signals is not well established. In our recent report, "Anchored PKA recruitment of active Rac," we identify a cortical actin cytoskeletal signaling complex containing an A-Kinase Anchoring Protein (AKAP) and the IQGAP2 isoform. We show that dynamic assembly of this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 21 شماره
صفحات -
تاریخ انتشار 2013