Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium
نویسندگان
چکیده
Colchicine- and vinblastine-induced depolymerization of microtubules (MTs) in the intestinal epithelium of rats and mice resulted in significant delivery of three apical membrane proteins (alkaline phosphatase, sucrase-isomaltase, and aminopeptidase N) to the basolateral membrane domain. In addition, typical brush borders (BBs) occurred at the basolateral cell surface, consisting of numerous microvilli that contained the four major components of the cytoskeleton of apical microvilli (actin, villin, fimbrin, and the 110-kD protein). Formation of basolateral microvilli required polymerization of actin and proceeded at glycocalyx-studded plaques that resembled the dense plaques located at the tips of apical microvilli. BBs from the basolateral membrane became internalized into BB-containing vacuoles which served as recipient organelles for newly synthesized apical membrane proteins. The BB vacuoles fused with each other and finally were inserted into the apical BB. Polarized distribution of Na+,K+-ATPase, a basolateral membrane protein, was not affected by drug-induced depolymerization of MTs. These observations indicate that Golgi-derived carrier vesicles (CVs) containing apical membrane proteins are vectorially guided to the apical cell surface by a retrograde transport along MTs. MTs are uniformly oriented towards a narrow space underneath the apical terminal web (termed subterminal space) that contains MT-organizing properties and controls polarized alignment of MTs. In contrast to apical CVs, targeting of basolateral CVs appears to be independent of MTs but demands a barrier at the apical membrane domain that prevents basolateral CVs from apical fusion (transport barrier hypothesis).
منابع مشابه
Endocytic and transcytic pathways in Caco-2 cells.
The human colonic adenocarcinoma derived cell line, Caco-2 [l], may be grown as a polarized epithelium on permeable filter supports and develops a number of characteristic enterocyte functions when grown to confluency. The differentiated functions include the development of apical brush border microvilli, the presence of tight junctions, the unique electrical properties of transporting epitheli...
متن کاملControl of apico-basal epithelial polarity by the microtubule minus-end-binding protein CAMSAP3 and spectraplakin ACF7.
The microtubule cytoskeleton regulates cell polarity by spatially organizing membrane trafficking and signaling processes. In epithelial cells, microtubules form parallel arrays aligned along the apico-basal axis, and recent work has demonstrated that the members of CAMSAP/Patronin family control apical tethering of microtubule minus ends. Here, we show that in mammalian intestinal epithelial c...
متن کاملA specifically apical sub-membrane intermediate filament cytoskeleton in non-brush-border epithelial cells.
Although many pieces of evidence support the notion of a role for the cytoskeleton in epithelial polarization, no cytoskeletal component has been found to be specifically apical, except for some actin-binding proteins. Here we report the apical distribution of a 53 kDa cytokeratin. Furthermore, this cytokeratin co-purified with biotinylated apical plasma membrane proteins in high density comple...
متن کاملThe cytoskeleton in development of epithelial cell polarity.
The polarization of intestinal epithelial cells and the stereotypic arrangement of their actin-based cytoskeleton have made these epithelia an excellent system to explore the organization and formation of a cortical actin-based cytoskeleton. Through a combined morphological and biochemical analysis, the molecular arrangement of many of the components of the brush border has been elucidated. Stu...
متن کاملRemodeling of the Intestinal Brush Border Underlies Adhesion and Virulence of an Enteric Pathogen
UNLABELLED Intestinal colonization by Vibrio parahaemolyticus-the most common cause of seafood-borne bacterial enteritis worldwide-induces extensive disruption of intestinal microvilli. In orogastrically infected infant rabbits, reorganization of the apical brush border membrane includes effacement of some microvilli and marked elongation of others. All diarrhea, inflammation, and intestinal pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 109 شماره
صفحات -
تاریخ انتشار 1989