Surface/Volume-Based Articulated 3D Spine Inference through Markov Random Fields
نویسندگان
چکیده
This paper presents a method towards inferring personalized 3D spine models to intraoperative CT data acquired for corrective spinal surgery. An accurate 3D reconstruction from standard X-rays is obtained before surgery to provide the geometry of vertebrae. The outcome of this procedure is used as basis to derive an articulated spine model that is represented by consecutive sets of intervertebral articulations relative to rotation and translation parameters (6 degrees of freedom). Inference with respect to the model parameters is then performed using an integrated and interconnected Markov Random Field graph that involves singleton and pairwise costs. Singleton potentials measure the support from the data (surface or image-based) with respect to the model parameters, while pairwise constraints encode geometrical dependencies between vertebrae. Optimization of model parameters in a multi-modal context is achieved using efficient linear programming and duality. We show successful image registration results from simulated and real data experiments aimed for image-guidance fusion.
منابع مشابه
Inferring Preoperative Reconstructed Spine Models to Volumetric CT Data through High-Order MRFs
In this paper, we introduce a novel approach based on higher order energy functions which have the ability to encode global structural dependencies to infer articulated 3D spine models to CT volume data. A personalized geometrical model is reconstructed from biplanar X-rays before spinal surgery in order to create a spinal column representation which is modeled by a series of intervertebral tra...
متن کاملNonlinear Embedding towards Articulated Spine Shape Inference Using Higher-Order MRFs
In this paper we introduce a novel approach for inferring articulated spine models from images. A low-dimensional manifold embedding is created from a training set of prior mesh models to establish the patterns of global shape variations. Local appearance is captured from neighborhoods in the manifold once the overall representation converges. Inference with respect to the manifold and shape pa...
متن کاملAssessment of Left Ventricular Function in Cardiac MSCT Imaging by a 4D Hierarchical Surface-Volume Matching Process
Multislice computed tomography (MSCT) scanners offer new perspectives for cardiac kinetics evaluation with 4D dynamic sequences of high contrast and spatiotemporal resolutions. A new method is proposed for cardiac motion extraction in multislice CT. Based on a 4D hierarchical surface-volume matching process, it provides the detection of the heart left cavities along the acquired sequence and th...
متن کاملUsing Strong Shape Priors for Stereo
This paper addresses the problem of obtaining an accurate 3D reconstruction from multiple views. Taking inspiration from the recent successes of using strong prior knowledge for image segmentation, we propose a framework for 3D reconstruction which uses such priors to overcome the ambiguity inherent in this problem. Our framework is based on an object-specific Markov Random Field (MRF)[10]. It ...
متن کاملEfficient Inference of Continuous Markov Random Fields with Polynomial Potentials
In this paper, we prove that every multivariate polynomial with even degree can be decomposed into a sum of convex and concave polynomials. Motivated by this property, we exploit the concave-convex procedure to perform inference on continuous Markov random fields with polynomial potentials. In particular, we show that the concave-convex decomposition of polynomials can be expressed as a sum-of-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 12 Pt 2 شماره
صفحات -
تاریخ انتشار 2009