tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence
نویسندگان
چکیده
Microbial pathogens adapt to the stress of infection by regulating transcription, translation and protein modification. We report that changes in gene expression in hypoxia-induced non-replicating persistence in mycobacteria-which models tuberculous granulomas-are partly determined by a mechanism of tRNA reprogramming and codon-biased translation. Mycobacterium bovis BCG responded to each stage of hypoxia and aerobic resuscitation by uniquely reprogramming 40 modified ribonucleosides in tRNA, which correlate with selective translation of mRNAs from families of codon-biased persistence genes. For example, early hypoxia increases wobble cmo5U in tRNAThr(UGU), which parallels translation of transcripts enriched in its cognate codon, ACG, including the DosR master regulator of hypoxic bacteriostasis. Codon re-engineering of dosR exaggerates hypoxia-induced changes in codon-biased DosR translation, with altered dosR expression revealing unanticipated effects on bacterial survival during hypoxia. These results reveal a coordinated system of tRNA modifications and translation of codon-biased transcripts that enhance expression of stress response proteins in mycobacteria.
منابع مشابه
Highly Predictive Reprogramming of tRNA Modifications Is Linked to Selective Expression of Codon-Biased Genes
Cells respond to stress by controlling gene expression at several levels, with little known about the role of translation. Here, we demonstrate a coordinated translational stress response system involving stress-specific reprogramming of tRNA wobble modifications that leads to selective translation of codon-biased mRNAs representing different classes of critical response proteins. In budding ye...
متن کاملtRNA modifications regulate translation during cellular stress.
The regulation of gene expression in response to stress is an essential cellular protection mechanism. Recent advances in tRNA modification analysis and genome-based codon bias analytics have facilitated studies that lead to a novel model for translational control, with translation elongation dynamically regulated during stress responses. Stress-induced increases in specific anticodon wobble ba...
متن کاملInhibition of translation termination mediated by an interaction of eukaryotic release factor 1 with a nascent peptidyl-tRNA.
Expression of the human cytomegalovirus UL4 gene is inhibited by translation of a 22-codon-upstream open reading frame (uORF2). The peptide product of uORF2 acts in a sequence-dependent manner to inhibit its own translation termination, resulting in persistence of the uORF2 peptidyl-tRNA linkage. Consequently, ribosomes stall at the uORF2 termination codon and obstruct downstream translation. S...
متن کاملCodon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses.
tRNA (tRNA) is a key molecule used for protein synthesis, with multiple points of stress-induced regulation that can include transcription, transcript processing, localization and ribonucleoside base modification. Enzyme-catalyzed modification of tRNA occurs at a number of base and sugar positions and has the potential to influence specific anticodon-codon interactions and regulate translation....
متن کاملA System of RNA Modifications and Biased Codon Use Controls Cellular Stress Response at the Level of Translation
Cells respond to environmental stressors and xenobiotic exposures using regulatory networks to control gene expression, and there is an emerging appreciation for the role of numerous postsynthetic chemical modifications of DNA, RNA, and proteins in controlling transcription and translation of the stress response. In this Perspective, we present a model for a new network that regulates the cellu...
متن کامل