Phosphate groups modifying myelin basic proteins are metabolically labile; methyl groups are stable
نویسندگان
چکیده
Young and adult rats received intracranial injections of [33P]orthophosphoric acid. The time course of the appearance and decay of the radioactive label on basic proteins in isolated myelin was followed for 1 mo. Incorporation was maximal by 1 h, followed by a decay phase with a half-life of approximately 2 wk. However, radioactivity in the acid-soluble precursor pool (which always constituted at least half of the total radioactivity) decayed with a similar half-life, suggesting that the true turnover time of basic protein phosphates might be masked by continued exchange with a long-lived radioactive precursor pool. Calculations based on the rate of incorporation were made to more closely determine the true turnover time; it was found that most of the phosphate groups of basic protein turned over in a matter of minutes. Incorporation was independent of the rate of myelin synthesis but was proportional to the amount of myelin present. Experiments in which myelin was subfractionated to yield fractions differing in degree of compaction suggested that even the basic protein phosphate groups of primarily compacted myelin participated in this rapid exchange. Similar studies were carried out on the metabolism of radioactive amino acids incorporated into the peptide backbone of myelin basic proteins. The metabolism of the methyl groups of methylarginines also was monitored using [methyl-3H]methionine as a precursor. In contrast to the basic protein phosphate groups, both the peptide backbone and the modifying methyl groups had a metabolic half-life of months, which cannot be accounted for by reutilization from a pool of soluble precursor. The demonstration that the phosphate groups of myelin basic protein turn over rapidly suggests that, in contrast to the static morphological picture, basic proteins may be readily accessible to cytoplasm in vivo.
منابع مشابه
The alk-1-enyl group content of mammalian myelin phosphoglycerides by quantitative two-dimensional thin-layer chromatography.
Myelin phospholipids have been examined by a separation-reaction-separation procedure for two-dimensional thin-layer chromatography on silica gel. After separation in one dimension, alk-1-enyl groups are cleaved by exposure of the plates to HCl fumes. Development in the second dimension quantitatively separates acid-labile and acid-stable phosphoglycerides as well as the aldehydes released from...
متن کاملPhosphorylation of basic amino acid residues in proteins: important but easily missed.
Reversible phosphorylation is the most widespread posttranslational protein modification, playing regulatory role in almost every aspect of cell life. The majority of protein phosphorylation research has been focused on serine, threonine and tyrosine that form acid-stable phosphomonoesters. However, protein histidine, arginine and lysine residues also may undergo phosphorylation to yield acid-l...
متن کاملNew metabolically stabilized analogues of lysophosphatidic acid: agonists, antagonists and enzyme inhibitors.
Lysophosphatidic acid (LPA) is a metabolically labile natural phospholipid with a bewildering array of physiological effects. We describe herein a variety of long-lived receptor-specific agonists and antagonists for LPA receptors. Several LPA and PA (phosphatidic acid) analogues also inhibit LPP (lipid phosphate phosphatase). The sn-1 or sn-2 hydroxy groups have been replaced by fluorine, diflu...
متن کاملInability of 4-Dimethylaminoazobenzene To Act as a Major
In the rat and other species “labile― methyl groups are essential to normal metabolism (5). These are methyl groups which are capable of be ing transferred in toto from one compound to an other by specific enzymes and enzyme cofactors. In the rat the major source of such groups is the diet, which may contain them in the form of such compounds as i@-methionine, choline, betaine, and possibly...
متن کاملEnzymic methylation of myelin basic protein in myelin.
Myelin fractions with different degrees of compaction were isolated from bovine brain, and post-translational methylation of membrane-associated proteins was studied. When the purified myelin-basic-protein-specific protein methylase I and S-adenosyl-L-[methyl-14C]methionine were added exogenously, the most compact myelin fraction exhibited higher methyl-accepting activity than the less compact ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 97 شماره
صفحات -
تاریخ انتشار 1983