On Exceptional Eigenvalues of the Laplacian for Γ0(n)

نویسندگان

  • XIAN-JIN LI
  • Wen-Ching Winnie Li
چکیده

An explicit Dirichlet series is obtained, which represents an analytic function of s in the half-plane s > 1/2 except for having simple poles at points sj that correspond to exceptional eigenvalues λj of the nonEuclidean Laplacian for Hecke congruence subgroups Γ0(N) by the relation λj = sj(1− sj) for j = 1, 2, · · · , S. Coefficients of the Dirichlet series involve all class numbers hd of real quadratic number fields. But, only the terms with hd d1/2− for sufficiently large discriminants d contribute to the residues mj/2 of the Dirichlet series at the poles sj , where mj is the multiplicity of the eigenvalue λj for j = 1, 2, · · · , S. This may indicate (I’m not able to prove yet) that the multiplicity of exceptional eigenvalues can be arbitrarily large. On the other hand, by density theorem the multiplicity of exceptional eigenvalues is bounded above by a constant depending only on N .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Exceptional Eigenvalues of the Laplacian for Γ 0 ( N ) 3 2

Abstract. An explicit Dirichlet series is obtained, which represents an analytic function of s in the half-plane Rs > 1/2 except for having simple poles at points sj that correspond to exceptional eigenvalues λj of the non-Euclidean Laplacian for Hecke congruence subgroups Γ0(N) by the relation λj = sj(1 − sj) for j = 1, 2, · · · , S. Coefficients of the Dirichlet series involve all class numbe...

متن کامل

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

Seidel Signless Laplacian Energy of Graphs

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...

متن کامل

On Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs

Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...

متن کامل

Laplacian Sum-Eccentricity Energy of a Graph

We introduce the Laplacian sum-eccentricity matrix LS_e} of a graph G, and its Laplacian sum-eccentricity energy LS_eE=sum_{i=1}^n |eta_i|, where eta_i=zeta_i-frac{2m}{n} and where zeta_1,zeta_2,ldots,zeta_n are the eigenvalues of LS_e}. Upper bounds for LS_eE are obtained. A graph is said to be twinenergetic if sum_{i=1}^n |eta_i|=sum_{i=1}^n |zeta_i|. Conditions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008