Hot Electron Plasma Equilibrium and Stability in the Constance B Mirror Experiment

نویسنده

  • Xing Chen
چکیده

An experimental study of the equilibrium and macroscopic stability property of an electron cyclotron resonance heating (ECRH) generated plasma in a minimum-B mirror is presented. The Constance B mirror is a single cell quadrupole magnetic mirror in which high beta (3 K 0.3) hot electron plasmas (T, ~ 400 keV) are created with up to 4 kW of ECRH power. The plasma equilibrium profile is hollow and resembles the baseball seam geometry of the magnet which provides the confining magnetic field. This configuration coincides with the drift orbit of deeply trapped particles. The on-axis hollowness of the hot electron density profile is 50 t 10%, and the pressure profile is at least as hollow as, if not more than, the hot electron density profile. The hollow plasma equilibrium is macroscopically stable and generated in all the experimental conditions in which the machine has been operated. The hollowness of the plasma pressure profile is not limited by the marginal stability condition. Small macroscopic plasma fluctuations in the range of the hot electron curvature drift frequency sometimes occur but. their growth rate is small (Wi/W, < 10-2) and saturate at very low level (B/B < 10-). Particle drift reversal is predicted to occur for the model pressure profile which best fits the experimental data under the typical operating conditions. No strong instability is observed when the plasma is near the drift reversal parameter regime, despite a theoretical prediction of instability under such conditions. The experiment shows that the cold electron population has no stabilizing effect to the hot electrons, which disagrees with current hot electron stability theories and results of previous maximum-B experiments. A theoretical analysis using MHD theory shows that the compressibility can stabilize a plasma with a hollowness of 20-30 percent in the Constance B mirror well. Although the Constance plasma is not typically in a regime in which MHD theory is valid, the stabilizing effect of compress-ibility suggests that the geometric effects which relate to the field line curvature play a significant role. The observed plasma stability cannot be fully explained by the theories based on the effects such as line-tying, finite electron or ion Larmor radius, and compressibility.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron Cyclotron Heating in the Constance 2 Mirror Experiment* Electron Cyclotron Heating in the Constance 2 Mirror Experiment

Electron cyclotron heating of a highly-ionized plasma in mirror geomctry is investigated. Of primary interest is the experimental diagnosis of the elcctron energy distribution and the comparison of the results of this diagnosis with a two dimensional, time-dependent Fokkcr-Planck simulation. 'Tliese two goals are accomplished in four steps. (1) First, the power balance of the heated and unheate...

متن کامل

Enhanced loss of magnetic-mirror-trapped fast electrons by a shear Alfv en wave

Laboratory observations of enhanced loss of magnetic mirror trapped fast electrons irradiated by a shear Alfv en Wave (SAW) are reported. The experiment is performed in the quiescent after-glow plasma in the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62(12), 2875–2883 (1991)]. A trapped energetic electron population (>100 keV) is generated in a magnetic mirror section (mirror rati...

متن کامل

Hot Corrosion Behavior of Functional Graded Material Thermal Barrier Coating (RESEARCH NOTE)

In this paper a functional graded material (FGM) thermal barrier coating (TBC) is prepared using Atmospheric Plasma Spraying (APS) method. The FGM layers were deposited by varying the feeding ratio of CYSZ/NiCrAlY and conventional CYSZ on a NiCrALY-coated Inconel 738 substrates. Hot corrosion behavior, bonding strength and the related failure mechanisms of a conventional TBC and a FGM TBC are i...

متن کامل

Numerical Modeling of Non-equilibrium Plasma Discharge of Hydrogenated Silicon Nitride (SiH4/NH3/H2)

In this work, we model a radiofrequency discharge of hydrogenated silicon nitride in a capacitive coupled plasma reactor using Maxwellian and non-Maxwellian electron energy distribution function. The purpose is to investigate whether there is a real advantage and a significant contribution using non-Maxwellian electron energy distribution function rather than Maxwellian one for determining the ...

متن کامل

Stability Analysis in Parametrically Excited Electrostatic Torsional Micro-actuators

This paper addresses the static and dynamic stabilities of a parametrically excited torsional micro-actuator. The system is composed of a rectangular micro-mirror symmetrically suspended between two electrodes and acted upon by a steady (dc ) while simultaneously superimposed to an (ac ) voltage. First, the stability of the system subjected to a quasi-statically applied (dc ) voltage is investi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014