Severe molecular defects of a novel FOXC1 W152G mutation result in aniridia.
نویسندگان
چکیده
PURPOSE FOXC1 mutations result in Axenfeld-Rieger syndrome, a disorder characterized by a broad spectrum of malformations of the anterior segment of the eye and an elevated risk for glaucoma. A novel FOXC1 W152G mutation was identified in a patient with aniridia. Molecular analysis was conducted to determine the functional consequences of the FOXC1 W152G mutation. METHODS Site-directed mutagenesis was used to introduce the W152G mutation into the FOXC1 complementary DNA. The levels of W152G protein expression and the functional abilities of the mutant protein were determined. RESULTS After screening for mutations in PAX6, CYP1B1, and FOXC1, a novel FOXC1 W152G mutation was identified in a newborn boy with aniridia and congenital glaucoma. Molecular analysis of the W152G mutation revealed that the mutant protein has severe molecular consequences in FOXC1, including defects in phosphorylation, protein folding, DNA-binding ability, inability to transactivate a reporter gene, and nuclear localization. Although W152G has molecular defects similar to those of the previously studied FOXC1 L130F mutation, W152G causes a more severe phenotype than L130F. Both the W152G and the L130F mutations result in the formation of protein aggregates in the cytoplasm. However, unlike the L130F aggregates, the W152G aggregates do not form microtubule-dependent inclusion bodies, known as aggresomes. CONCLUSIONS Severe molecular consequences, including the inability of the W152G protein aggregates to form protective aggresomes, may underlie the aniridia phenotype that results from the FOXC1 W152G mutation.
منابع مشابه
A Novel Homozygous Mutation in FOXC1 Causes Axenfeld Rieger Syndrome with Congenital Glaucoma
BACKGROUND Anterior segment dysgenesis (ASD) disorders are a group of clinically and genetically heterogeneous phenotypes in which frequently cornea, iris, and lens are affected. This study aimed to identify novel mutations in PAX6, PITX2 and FOXC1 in families with anterior segment dysgenesis disorders. METHODS We studied 14 Pakistani and one Mexican family with Axenfeld Rieger syndrome (ARS;...
متن کاملMolecular analysis of FOXC1 in subjects presenting with severe developmental eye anomalies
PURPOSE Haploinsufficiency through mutation or deletion of the forkhead transcription factor, FOXC1, causes Axenfeld-Rieger anomaly, which manifests as a range of anterior segment eye defects and glaucoma. The aim of this study is to establish whether mutation of FOXC1 contributes toward other developmental eye anomalies, namely anophthalmia, microphthalmia, and coloboma. METHODS The coding s...
متن کاملA novel mutation of PAX6 identified in a Chinese twin family with congenital aniridia complicated with nystagmus.
Genetic variations within the paired box gene 6 (PAX6) gene are associated with congenital aniridia. To detect the genetic defects in a Chinese twin family with congenital aniridia and nystagmus, exons of PAX6 were amplified by polymerase chain reaction (PCR), sequenced and compared with a reference database. Six members from the family of three generations were included in the study. The twins...
متن کاملNovel mutations in the FOXC1 gene in Japanese patients with Axenfeld-Rieger syndrome
PURPOSE Mutations in the forkhead transcription factor (FOXC1) gene have been shown to cause juvenile glaucoma associated with a variety of anterior-segment anomalies. The purpose of this study was to determine the ocular and genetic characteristics of two Japanese families with Axenfeld-Rieger syndrome (ARS). METHODS Genomic DNA was extracted from the leukocytes of six members of two familie...
متن کاملGenetic Analysis of 'PAX6-Negative' Individuals with Aniridia or Gillespie Syndrome.
We report molecular genetic analysis of 42 affected individuals referred with a diagnosis of aniridia who previously screened as negative for intragenic PAX6 mutations. Of these 42, the diagnoses were 31 individuals with aniridia and 11 individuals referred with a diagnosis of Gillespie syndrome (iris hypoplasia, ataxia and mild to moderate developmental delay). Array-based comparative genomic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 50 8 شماره
صفحات -
تاریخ انتشار 2009