Borna disease virus requires cholesterol in both cellular membrane and viral envelope for efficient cell entry.
نویسندگان
چکیده
Borna disease virus (BDV), the prototypic member of the family Bornaviridae within the order Mononegavirales, provides an important model for the investigation of viral persistence within the central nervous system (CNS) and of associated brain disorders. BDV is highly neurotropic and enters its target cell via receptor-mediated endocytosis, a process mediated by the virus surface glycoprotein (G), but the cellular factors and pathways determining BDV cell tropism within the CNS remain mostly unknown. Cholesterol has been shown to influence viral infections via its effects on different viral processes, including replication, budding, and cell entry. In this work, we show that cell entry, but not replication and gene expression, of BDV was drastically inhibited by depletion of cellular cholesterol levels. BDV G-mediated attachment to BDV-susceptible cells was cholesterol independent, but G localized to lipid rafts (LR) at the plasma membrane. LR structure and function critically depend on cholesterol, and hence, compromised structural integrity and function of LR caused by cholesterol depletion likely inhibited the initial stages of BDV cell internalization. Furthermore, we also show that viral-envelope cholesterol is required for BDV infectivity.
منابع مشابه
Mechanism of Borna disease virus entry into cells.
We have investigated the entry pathway of Borna disease virus (BDV). Virus entry was assessed by detecting early viral replication and transcription. Lysosomotropic agents (ammonium chloride, chloroquine, and amantadine), as well as energy depletion, prevented BDV infection, indicating that BDV enters host cells by endocytosis and requires an acidic intracellular compartment to allow membrane f...
متن کاملDuck hepatitis B virus requires cholesterol for endosomal escape during virus entry.
The identity and functionality of biological membranes are determined by cooperative interaction between their lipid and protein constituents. Cholesterol is an important structural lipid that modulates fluidity of biological membranes favoring the formation of detergent-resistant microdomains. In the present study, we evaluated the functional role of cholesterol and lipid rafts for entry of he...
متن کاملVaccinia virus penetration requires cholesterol and results in specific viral envelope proteins associated with lipid rafts.
Vaccinia virus infects a wide variety of mammalian cells from different hosts, but the mechanism of virus entry is not clearly defined. The mature intracellular vaccinia virus contains several envelope proteins mediating virion adsorption to cell surface glycosaminoglycans; however, it is not known how the bound virions initiate virion penetration into cells. For this study, we investigated the...
متن کاملHerpes Simplex Virus 1 Envelope Cholesterol Facilitates Membrane Fusion
Methyl beta-cyclodextrin (MβCD) treatment of herpes simplex virus 1 (HSV-1) reduced envelope cholesterol levels and inhibited viral entry and infectivity in several cell types, regardless of the dependence of entry on endocytosis or low pH. Viral protein composition was similar in MβCD-treated and untreated virions, and ultrastructural analysis by electron microscopy revealed that cholesterol r...
متن کاملTargeting cell entry of enveloped viruses as an antiviral strategy.
The entry of enveloped viruses into their host cells involves several successive steps, each one being amenable to therapeutic intervention. Entry inhibitors act by targeting viral and/or cellular components, through either the inhibition of protein-protein interactions within the viral envelope proteins or between viral proteins and host cell receptors, or through the inhibition of protein-lip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 83 6 شماره
صفحات -
تاریخ انتشار 2009