Role of cell cycle in epidermal growth factor receptor inhibitor-mediated radiosensitization.
نویسندگان
چکیده
Epidermal growth factor receptor (EGFR) inhibitors are increasingly used in combination with radiotherapy in the treatment of various EGFR-overexpressing cancers. However, little is known about the effects of cell cycle status on EGFR inhibitor-mediated radiosensitization. Using EGFR-overexpressing A431 and UMSCC-1 cells in culture, we found that radiation activated the EGFR and extracellular signal-regulated kinase pathways in quiescent cells, leading to progression of cells from G(1) to S, but this activation and progression did not occur in proliferating cells. Inhibition of this activation blocked S-phase progression and protected quiescent cells from radiation-induced death. To determine if these effects were caused by EGFR expression, we transfected Chinese hamster ovary (CHO) cells, which lack EGFR expression, with EGFR expression vector. EGFR expressed in CHO cells also became activated in quiescent cells but not in proliferating cells after irradiation. Moreover, quiescent cells expressing EGFR underwent increased radiation-induced clonogenic death compared with both proliferating CHO cells expressing EGFR and quiescent wild-type CHO cells. Our data show that radiation-induced enhancement of cell death in quiescent cells involves activation of the EGFR and extracellular signal-regulated kinase pathways. Furthermore, they suggest that EGFR inhibitors may protect quiescent tumor cells, whereas radiosensitization of proliferating cells may be caused by downstream effects such as cell cycle redistribution. These findings emphasize the need for careful scheduling of treatment with the combination of EGFR inhibitors and radiation and suggest that EGFR inhibitors might best be given after radiation in order to optimize clinical outcome.
منابع مشابه
Assessment of epidermal growth factor receptor status in glioblastomas
Objective(s): Our previous study showed that a newly designed tracer radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline ([125I]PYK) is promising for the evaluation of the epidermal growth factor receptor (EGFR) status and prediction of gefitinib treatment of non-small cell lung cancer. EGFR is over-expressed and mutated also in glioblastoma. In the present study, the ...
متن کامل2D-QSAR and docking studies of 4-anilinoquinazoline derivatives as epidermal growth factor receptor tyrosine kinase inhibitors
Introduction: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor derivatives play an important role in the treatment of cancer. We aim to construct 2D-QSAR models using various chemometrics using 4-anilinoquinazoline-containing EGFR TKIs. In addition, the binding profile of these compounds was evaluated using a docking study. Materials and Methods: In this study, 122 compounds of...
متن کاملExpression of Epidermal Growth Factor Receptor and the association with Demographic and Prognostic Factors in Patients with Non-small Cell Lung Cancer
Introduction: Growth, proliferation, survival, and differentiation are the prominent characteristics of cells, which are affected by cancer. Epidermal growth factor receptor (EGFR) plays a pivotal role in the effective control of these features. Given the significance of EGFR signaling pathway in non-small cell lung cancer (NSCLC), EGFR expression is influential on these cell characteristics. I...
متن کاملEGF receptor inhibition radiosensitizes NSCLC cells by inducing senescence in cells sustaining DNA double-strand breaks.
The mechanisms by which inhibition of the epidermal growth factor receptor (EGFR) sensitizes non-small cell lung cancer (NSCLC) cells to ionizing radiation remain poorly understood. We set out to characterize the radiosensitizing effects of the tyrosine kinase inhibitor erlotinib and the monoclonal antibody cetuximab in NSCLC cells that contain wild-type p53. Unexpectedly, EGFR inhibition led t...
متن کاملCorrelation of HER1/EGFR expression and degree of radiosensitizing effect of the HER1/EGFR-tyrosine kinase inhibitor erlotinib.
Epidermal growth factor receptor (HER1/EGFR)-mediated signal transduction pathways are important in cellular response to ionizing radiation. High HER1/EGFR expression on cancer cells may contribute to radioresistance. In this pre-clinical study, we evaluated the radiosensitizing effect of erlotinib, a small molecule HER1/EGFR inhibitor in three human cancer cell lines with different HER1/EGFR e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 69 12 شماره
صفحات -
تاریخ انتشار 2009