Generalized Empirical Likelihood Estimators
نویسندگان
چکیده
In an effort to improve the small sample properties of generalized method of moments (GMM) estimators, a number of alternative estimators have been suggested. These include empirical likelihood (EL), continuous updating, and exponential tilting estimators. We show that these estimators share a common structure, being members of a class of generalized empirical likelihood (GEL) estimators. We use this structure to compare their higher order asymptotic properties. We find that GEL has no asymptotic bias due to correlation of the moment functions with their Jacobian, eliminating an important source of bias for GMM in models with endogeneity. We also find that EL has no asymptotic bias from estimating the optimal weight matrix, eliminating a further important source of bias for GMM in panel data models. We give bias corrected GMM and GEL estimators. We also show that bias corrected EL inherits the higher order property of maximum likelihood, that it is higher order asymptotically efficient relative to the other bias corrected estimators. JEL Classification: C13, C30
منابع مشابه
MATHEMATICAL ENGINEERING TECHNICAL REPORTS The Information Geometric Structure of Generalized Empirical Likelihood Estimators
The generalized empirical likelihood (GEL) method produces a class of estimators of parameters defined via general estimating equations. This class includes several important estimators, such as empirical likelihood (EL), exponential tilting (ET), and continuous updating estimators (CUE). We examine the information geometric structure of GEL estimators. We introduce a class of estimators closel...
متن کاملOn the Maximum Likelihood Estimators for some Generalized Pareto-like Frequency Distribution
Abstract. In this paper we consider some four-parametric, so-called Generalized Pareto-like Frequency Distribution, which have been constructed using stochastic Birth-Death Process in order to model phenomena arising in Bioinformatics (Astola and Danielian, 2007). As examples, two ”real data” sets on the number of proteins and number of residues for analyzing such distribution are given. The co...
متن کاملA New Class of Asymptotically E¢ cient Estimators for Moment Condition Models
In this paper, we propose a new class of asymptotically e¢ cient estimators for moment condition models. These estimators share the same higher order bias properties as the generalized empirical likelihood estimators and once bias corrected, have the same higher order e¢ ciency properties as the bias corrected generalized empirical likelihood estimators. Unlike the generalized empirical likelih...
متن کاملHigher Order Properties of Gmm and Generalized Empirical Likelihood Estimators
In an effort to improve the small sample properties of generalized method of moments (GMM) estimators, a number of alternative estimators have been suggested. These include empirical likelihood (EL), continuous updating, and exponential tilting estimators. We show that these estimators share a common structure, being members of a class of generalized empirical likelihood (GEL) estimators. We us...
متن کاملModerate deviations of generalized method of moments and empirical likelihood estimators
This paper studies moderate deviation behaviors of the generalized method of moments and generalized empirical likelihood estimators for generalized estimating equations, where the number of equations can be larger than the number of unknown parameters. We consider two cases for the data generating probability measure: themodel assumption and local contaminations or deviations from the model as...
متن کامل