Ctf18 is required for homologous recombination-mediated double-strand break repair
نویسندگان
چکیده
The efficient repair of double-strand breaks (DSBs) is crucial in maintaining genomic integrity. Sister chromatid cohesion is important for not only faithful chromosome segregation but also for proper DSB repair. During DSB repair, the Smc1-Smc3 cohesin complex is loaded onto chromatin around the DSB to support recombination-mediated DSB repair. In this study, we investigated whether Ctf18, a factor implicated in the establishment of sister chromatid cohesion, is involved in DSB repair in budding yeast. Ctf18 was recruited to HO-endonuclease induced DSB sites in an Mre11-dependent manner and to damaged chromatin in G2/M phase-arrested cells. The ctf18 mutant cells showed high sensitivity to DSB-inducible genotoxic agents and defects in DSB repair, as well as defects in damage-induced recombination between sister chromatids and between homologous chromosomes. These results suggest that Ctf18 is involved in damage-induced homologous recombination.
منابع مشابه
BRCA1 facilitates microhomology-mediated end joining of DNA double strand breaks.
BRCA1 is critical for the maintenance of genomic stability, in part through its interaction with the Rad50.Mre11.Nbs1 complex, which occupies a central role in DNA double strand break repair mediated by nonhomologous end joining (NHEJ) and homologous recombination. BRCA1 has been shown to be required for homology-directed recombination repair. However, the role of BRCA1 in NHEJ, a critical path...
متن کاملTranscription-associated recombination is independent of XRCC2 and mechanistically separate from homology-directed DNA double-strand break repair
It has previously been shown that transcription greatly enhances recombination in mammalian cells. However, the proteins involved in catalysing this process and the recombination pathways involved in transcription-associated recombination (TAR) are still unknown. It is well established that both the BRCA2 protein and the RAD51 paralog protein XRCC2 are required for homologous recombination. Her...
متن کاملTransient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair
RNA-DNA hybrids are a major internal cause of DNA damage within cells, and their degradation by RNase H enzymes is important for maintaining genomic stability. Here, we identified an unexpected role for RNA-DNA hybrids and RNase H enzymes in DNA repair. Using a site-specific DNA double-strand break (DSB) system in Schizosaccharomyces pombe, we showed that RNA-DNA hybrids form as part of the hom...
متن کاملRAD5A, RECQ4A, and MUS81 have specific functions in homologous recombination and define different pathways of DNA repair in Arabidopsis thaliana.
Complex DNA structures, such as double Holliday junctions and stalled replication forks, arise during DNA replication and DNA repair. Factors processing these intermediates include the endonuclease MUS81, helicases of the RecQ family, and the yeast SNF2 ATPase RAD5 and its Arabidopsis thaliana homolog RAD5A. By testing sensitivity of mutant plants to DNA-damaging agents, we defined the roles of...
متن کاملEnd-joining repair of double-strand breaks in Drosophila melanogaster is largely DNA ligase IV independent.
Repair of DNA double-strand breaks can occur by either nonhomologous end joining or homologous recombination. Most nonhomologous end joining requires a specialized ligase, DNA ligase IV (Lig4). In Drosophila melanogaster, double-strand breaks created by excision of a P element are usually repaired by a homologous recombination pathway called synthesis-dependent strand annealing (SDSA). SDSA req...
متن کامل