Transmembrane protein 55B is a novel regulator of cellular cholesterol metabolism.
نویسندگان
چکیده
OBJECTIVE Interindividual variation in pathways affecting cellular cholesterol metabolism can influence levels of plasma cholesterol, a well-established risk factor for cardiovascular disease. Inherent variation among immortalized lymphoblastoid cell lines from different donors can be leveraged to discover novel genes that modulate cellular cholesterol metabolism. The objective of this study was to identify novel genes that regulate cholesterol metabolism by testing for evidence of correlated gene expression with cellular levels of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) mRNA, a marker for cellular cholesterol homeostasis, in a large panel of lymphoblastoid cell lines. APPROACH AND RESULTS Expression array profiling was performed on 480 lymphoblastoid cell lines established from participants of the Cholesterol and Pharmacogenetics (CAP) statin clinical trial, and transcripts were tested for evidence of correlated expression with HMGCR as a marker of intracellular cholesterol homeostasis. Of these, transmembrane protein 55b (TMEM55B) showed the strongest correlation (r=0.29; P=4.0E-08) of all genes not previously implicated in cholesterol metabolism and was found to be sterol regulated. TMEM55B knockdown in human hepatoma cell lines promoted the decay rate of the low-density lipoprotein receptor, reduced cell surface low-density lipoprotein receptor protein, impaired low-density lipoprotein uptake, and reduced intracellular cholesterol. CONCLUSIONS Here, we report identification of TMEM55B as a novel regulator of cellular cholesterol metabolism through the combination of gene expression profiling and functional studies. The findings highlight the value of an integrated genomic approach for identifying genes that influence cholesterol homeostasis.
منابع مشابه
Analysis of c.3369+213TA[7-56] and D7S523 microsatellites linked to Cystic Fibrosis Transmembrane Regulator.
Cystic fibrosis (CF) is a life-limiting autosomal recessive disorder affecting principally respiratory and digestive system . It is caused by cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation. The aim of this study was to determine the extent of repeat numbers and the degree of heterozygosity for c.3499+200TA(7_56) and D7S523 located in intron 17b and 1 cM proximal to t...
متن کاملRNA binding protein HuR regulates the expression of ABCA1.
ABCA1 is a major regulator of cellular cholesterol efflux and plasma HDL biogenesis. Even though the transcriptional activation of ABCA1 is well established, the posttranscriptional regulation of ABCA1 expression is poorly understood. Here, we investigate the potential contribution of the RNA binding protein (RBP) human antigen R (HuR) on the posttranscriptional regulation of ABCA1 expression. ...
متن کاملSUGP1 is a novel regulator of cholesterol metabolism
A large haplotype on chromosome 19p13.11 tagged by rs10401969 in intron 8 of SURP and G patch domain containing 1 (SUGP1) is associated with coronary artery disease (CAD), plasma LDL cholesterol levels, and other energy metabolism phenotypes. Recent studies have suggested that TM6SF2 is the causal gene within the locus, but we postulated that this locus could harbor additional CAD risk genes, i...
متن کاملNovel CFTR Mutations in Two Iranian Families with Severe Cystic Fibrosis
Background: Cystic fibrosis (CF) is a common autosomal recessive disorder that affects many body systems and is produced by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF is also the most frequently inherited disorder in the West. The aim of this study was to detect the mutations in the CFTR gene in two Iranian families with CF. Methods: After DNA extractio...
متن کاملKlotho as a Novel Cardioprotective Protein in Aged Heart
In recent years, researchers have been looking for genes whose products can directly affect the aging process. Among these, the anti-aging protein klotho has attracted much attention. This single transmembrane protein is expressed in the renal tissues, parathyroid gland and choroid network of the brain and acts as a co-receptor for Fibroblast Growth Factor FGF. In this way, it contributes to c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 34 9 شماره
صفحات -
تاریخ انتشار 2014