Laccase versus Laccase-Like Multi-Copper Oxidase: A Comparative Study of Similar Enzymes with Diverse Substrate Spectra
نویسندگان
چکیده
Laccases (EC 1.10.3.2) are multi-copper oxidases that catalyse the one-electron oxidation of a broad range of compounds including substituted phenols, arylamines and aromatic thiols to the corresponding radicals. Owing to their broad substrate range, copper-containing laccases are versatile biocatalysts, capable of oxidizing numerous natural and non-natural industry-relevant compounds, with water as the sole by-product. In the present study, 10 of the 11 multi-copper oxidases, hitherto considered to be laccases, from fungi, plant and bacterial origin were compared. A substrate screen of 91 natural and non-natural compounds was recorded and revealed a fairly broad but distinctive substrate spectrum amongst the enzymes. Even though the enzymes share conserved active site residues we found that the substrate ranges of the individual enzymes varied considerably. The EC classification is based on the type of chemical reaction performed and the actual name of the enzyme often refers to the physiological substrate. However, for the enzymes studied in this work such classification is not feasible, even more so as their prime substrates or natural functions are mainly unknown. The classification of multi-copper oxidases assigned as laccases remains a challenge. For the sake of simplicity we propose to introduce the term "laccase-like multi-copper oxidase" (LMCO) in addition to the term laccase that we use exclusively for the enzyme originally identified from the sap of the lacquer tree Rhus vernicifera.
منابع مشابه
Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers.
Laccase is a polyphenol oxidase, which belongs to the family of blue multicopper oxidases. These enzymes catalyze the one-electron oxidation of four reducing-substrate molecules concomitant with the four-electron reduction of molecular oxygen to water. Laccases oxidize a broad range of substrates, preferably phenolic compounds. In the presence of mediators, fungal laccases exhibit an enlarged s...
متن کاملCloning and heterologous expression of Laccase in pichia pastoris and determination some of biochemical properties
Laccase (EC 1.10.3.2) are multi-copper oxidase which catalyze the oxidation aromatic and non- aromatic compounds with electron reduction of molecular oxygen to water. Nucleotide sequence of laccase (accession number : ) was optimized according codon preference of Pichia pastoris. Gene was synthesized and cloned into pPICZalpha A. laccase under control of AOX1 promoter was transformed to P.pasto...
متن کاملBiochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli
Laccases are multi-copper oxidases that oxidize a broad range of substrates at the expense of molecular oxygen, without any need for co-factor regeneration. These enzymes bear high potential for the sustainable synthesis of fine chemicals and the modification of (bio)polymers. Here we describe cloning and expression of five novel bacterial laccase-like multi copper oxidases (LMCOs) of diverse o...
متن کاملNew insights into the catalytic active-site structure of multicopper oxidases.
Structural models determined by X-ray crystallography play a central role in understanding the catalytic mechanism of enzymes. However, X-ray radiation generates hydrated electrons that can cause significant damage to the active sites of metalloenzymes. In the present study, crystal structures of the multicopper oxidases (MCOs) CueO from Escherichia coli and laccase from a metagenome were deter...
متن کاملBiochemical and Computational Characterization of Laccases Involved in Bioremediation
Laccase (benzenediol : oxygen oxidoreductases; E.C. 1.10.3.2) a copper oxidase enzyme is capable of oxidizing phenolic and non-phenolic lignin related compounds as well as highly recalcitrant environmental pollutants such as aromatic amines. Their broad substrate specificity makes laccases highly suitable for diverse applications such as pulp bleaching, textile dye bleaching and bioremediation,...
متن کامل