Noncommutative Symmetric Hall-Littlewood Polynomials
نویسنده
چکیده
Noncommutative symmetric functions have many properties analogous to those of classical (commutative) symmetric functions. For instance, ribbon Schur functions (analogs of the classical Schur basis) expand positively in noncommutative monomial basis. More of the classical properties extend to noncommutative setting as I will demonstrate introducing a new family of noncommutative symmetric functions, depending on one parameter. It seems to be an appropriate noncommutative analog of the Hall-Littlewood polynomials. Résumé. Les fonctions symétriques non commutatives ont de nombreuses propriétés analogues à celles des fonctions symétriques classiques (commutatives). Par exemple, les fonctions de Schur en rubans (analogues de la base de Schur classique) admettent des développements à coefficients positifs dans la base des monômes non commutatifs. La plupart des propriétés classiques s’étendent au cas non commutatif, comme je le montrerai en introduisant une nouvelle famille de fonctions symétriques non commutatives, dépendant d’un paramètre. Cette famille semble être un analogue non commutatif approprié de la famille des polynômes de Hall-Littlewood.
منابع مشابه
Non-symmetric Hall–littlewood Polynomials
Using the action of the Yang–Baxter elements of the Hecke algebra on polynomials, we define two bases of polynomials in n variables. The Hall–Littlewood polynomials are a subfamily of one of them. For q = 0, these bases specialize to the two families of classical Key polynomials (i.e., Demazure characters for type A). We give a scalar product for which the two bases are adjoint to each other.
متن کاملCombinatorial Formula for Modified Hall-Littlewood Polynomials
We obtain new combinatorial formulae for modified Hall–Littlewood polynomials, for matrix elements of the transition matrix between the elementary symmetric polynomials and Hall-Littlewood’s ones, and for the number of rational points over the finite field of unipotent partial flag variety. The definitions and examples of generalized mahonian statistic on the set of transport matrices and dual ...
متن کاملA pr 2 00 8 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX
We introduce a new family of noncommutative analogs of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explici...
متن کاملA Generalization of Tokuyama's Formula to the Hall-Littlewood Polynomials
A theorem due to Tokuyama expresses Schur polynomials in terms of GelfandTsetlin patterns, providing a deformation of the Weyl character formula and two other classical results, Stanley’s formula for the Schur q-polynomials and Gelfand’s parametrization for the Schur polynomials. We generalize Tokuyama’s formula to the Hall-Littlewood polynomials by extending Tokuyama’s statistics. Our result, ...
متن کاملA generalization of Kawanaka’s identity for Hall-Littlewood polynomials and applications
Recently, starting from two infinite summation formulae for Hall-Littlewood polynomials, two of the present authors [7] have generalized a method due to Macdonald [9] to obtain new finite summation formulae for these polynomials. This approach permits them to extend Stembridge’s list of multiple qseries identities of Rogers-Ramanujan type [12]. Conversely these symmetric functions identities ca...
متن کامل