Knowledge Reduction Based on Evidence Reasoning Theory in Ordered Information Systems
نویسندگان
چکیده
Rough set theory has been considered as a useful tool to model the vagueness, imprecision, and uncertainty, and has been applied successfully in many fields. Knowledge reduction is one of the most important problems in rough set theory. However, in real-world most of information systems are based on dominance relations in stead of the classical rough set because of various factors. To acquire brief decision rules from systems based on dominance relations, knowledge reductions are needed. The main aim of this paper is to study the problem. The basic concepts and properties of knowledge reduction based on evidence reasoning theory are discussed. Furthermore, the characterization and knowledge reduction approaches based on evidence reasoning theory are obtained with examples in several kinds of ordered information system, which is every useful in future research works of the ordered information systems.
منابع مشابه
A New Approach for Knowledge Based Systems Reduction using Rough Sets Theory (RESEARCH NOTE)
Problem of knowledge analysis for decision support system is the most difficult task of information systems. This paper presents a new approach based on notions of mathematical theory of Rough Sets to solve this problem. Using these concepts a systematic approach has been developed to reduce the size of decision database and extract reduced rules set from vague and uncertain data. The method ha...
متن کاملMethods for knowledge reduction in inconsistent ordered information systems
Knowledge reduction is one of the most important problems in the study of rough set theory. However, in real-world, most of information systems are based on dominance relations in stead of the classical equivalence relation because of various factors. The ordering of properties of attributes plays a crucial role in those systems. To acquire brief decision rules from the systems, knowledge reduc...
متن کاملINTEGRATING CASE-BASED REASONING, KNOWLEDGE-BASED APPROACH AND TSP ALGORITHM FOR MINIMUM TOUR FINDING
Imagine you have traveled to an unfamiliar city. Before you start your daily tour around the city, you need to know a good route. In Network Theory (NT), this is the traveling salesman problem (TSP). A dynamic programming algorithm is often used for solving this problem. However, when the road network of the city is very complicated and dense, which is usually the case, it will take too long fo...
متن کاملRanking for Objects and Attribute Reductions in Intuitionistic Fuzzy Ordered Information Systems
We aim to investigate intuitionistic fuzzy ordered information systems. The concept of intuitionistic fuzzy ordered information systems is proposed firstly by introducing an intuitionistic fuzzy relation to ordered information systems. And a ranking approach for all objects is constructed in this system. In order to simplify knowledge representation, it is necessary to reduce some dispensable a...
متن کاملSymbolic Representation for Rough Set Attribute Reduction Using Ordered Binary Decision Diagrams
The theory of rough set is the current research focus for knowledge discovery, attribute reduction is one of crucial problem in rough set theory. Most existing attribute reduction algorithms are based on algebra and information representations, discernibility matrix is a common knowledge representation for attribute reduction. As problem solving under different knowledge representations corresp...
متن کامل