Characterization of human UMP/CMP kinase and its phosphorylation of D- and L-form deoxycytidine analogue monophosphates.
نویسندگان
چکیده
Pyrimidine nucleoside monophosphate kinase [UMP/CMP kinase (UMP/CMPK);EC 2.7.4.14] plays a crucial role in the formation of UDP, CDP, and dCDP, which are required for cellular nucleic acid synthesis. Several cytidine and deoxycytidine analogues are important anticancer and antiviral drugs. These drugs require stepwise phosphorylation to their triphosphate forms to exert their therapeutic effects. The role of UMP/CMPK for the phosphorylation of nucleoside analogues has been indicated. Thus, we cloned the human UMP/CMPK gene, expressed it in Escherichia coli, and purified it to homogeneity. Its kinetic properties were determined. UMP and CMP proved to be far better substrates than dCMP. UMP/CMPK used all of the nucleoside triphosphates as phosphate donors, with ATP and dATP being the best donors and CTP being the poorest. Furthermore, UMP/CMPK was able to phosphorylate all of the deoxycytidine analogue monophosphates that we tested. The relative efficiency was as follows: arabinofuranosyl-CMP > dCMP > beta-L-2',3'-dideoxy-3'-thia-CMP > Gemcitabine monophosphate > beta-D-2',3'-dideoxy-CMP; beta-L-2',3'-dideoxy-2',3'-didehydro-5-fluoro-CMP; beta-L-2',3'-dideoxy-5-fluoro-3'-thia-CMP > beta-L-2',3'-dideoxy-CMP > beta-L-dioxolane-CMP. By comparing the relative V(max)/K(m) values of D- and L-form dideoxy-CMP, we showed that this kinase lacked stereoselectivity. Reducing agents, such as DTT, 2-mercaptoethanol, and thioredoxin, were able to activate this enzyme, suggesting that its activity may be regulated by redox potential in vivo. UMP/CMPK localized predominantly to the cytoplasm. In addition, 196-amino acid UMP/CMPK was the actual form of UMP/CMPK, rather than the 228-amino acid form as suggested before.
منابع مشابه
Phosphorylation of deoxycytidine analog monophosphates by UMP-CMP kinase: molecular characterization of the human enzyme.
Phosphorylation of deoxycytidine analogs by cellular enzymes is a prerequisite for the activity of these compounds. We have investigated the kinetic parameters for the phosphorylation of 1-beta-D-arabinofuranosylcytosine (araC) and 2', 2'-difluorodeoxycytidine (dFdC) to their diphosphate forms catalyzed by human UMP-CMP kinase. We cloned the cDNA of this enzyme to enable characterization of the...
متن کاملPhosphorylation of Cytidine, Deoxycytidine, and Their Analog Monophosphates by Human UMP/CMP Kinase Is Differentially Regulated by ATP and Magnesium.
Human UMP/CMP kinase (cytidylate kinase; EC 2.7.4.14) is responsible for phosphorylation of CMP, UMP, and deoxycytidine monophosphate (dCMP) and also plays an important role in the activation of pyrimidine analogs, some of which are clinically useful anticancer or antiviral drugs. Previous kinetic data using recombinant or highly purified human UMP/CMP kinase showed that dCMP, as well as pyrimi...
متن کاملTitle : Phosphorylation of Cytidine - , Deoxycytidine - , and Their Analog - Monophosphates by Human UMP / CMP Kinase Is Differentially Regulated by ATP and Magnesium
Human UMP/CMP kinase (EC 2.7.4.14) is responsible for phosphorylation of CMP, UMP, and dCMP and also plays an important role in the activation of pyrimidine analogs, some of which are clinically useful anticancer or antiviral drugs. Previous kinetic data using recombinant or highly purified human UMP/CMP kinase showed that dCMP, as well as pyrimidine analog monophosphates, were much poorer subs...
متن کاملUMP/CMPK Is Not the Critical Enzyme in the Metabolism of Pyrimidine Ribonucleotide and Activation of Deoxycytidine Analogs in Human RKO Cells
BACKGROUND Human UMP/CMP kinase was identified based on its enzymatic activity in vitro. The role of this protein is considered critical for the maintenance of pyrimidine nucleotide pool profile and for the metabolism of pyrimidine analogs in cells, based on the in vitro study of partially purified enzyme and recombinant protein. However, no detailed study has yet addressed the role of this pro...
متن کاملNucleoside kinases, rate-limiting step of nucleoside analogues activation
Nucleoside analogues have proven to be a highly successful class of anti-cancer and anti-viral drugs. The therapeutic efficacy of nucleoside analogues is dependent of their intracellular phosphorylation. Two cellular nucleoside kinases, deoxycytidine kinase (dCK) and UMP-CMP kinase (CMK) are critical for phosphorylation of cytidine analogues. These kinases provide two first steps of activation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 62 6 شماره
صفحات -
تاریخ انتشار 2002