Singularities of Generalized Richardson Varieties

نویسنده

  • SARA BILLEY
چکیده

Richardson varieties play an important role in intersection theory and in the geometric interpretation of the Littlewood-Richardson Rule for flag varieties. We discuss three natural generalizations of Richardson varieties which we call projection varieties, intersection varieties, and rank varieties. In many ways, these varieties are more fundamental than Richardson varieties and are more easily amenable to inductive geometric constructions. In this paper, we study the singularities of each type of generalization. Like Richardson varieties, projection varieties are normal with rational singularities. We also study in detail the singular loci of projection varieties in Type A Grassmannians. We use Kleiman’s Transversality Theorem to determine the singular locus of any intersection variety in terms of the singular loci of Schubert varieties. This is a generalization of a criterion for any Richardson variety to be smooth in terms of the nonvanishing of certain cohomology classes which has been known by some experts in the field, but we don’t believe has been published previously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singularities of Integrable Systems and Algebraic Curves

We study the relationship between singularities of finite-dimensional integrable systems and singularities of the corresponding spectral curves. For the large class of integrable systems on matrix polynomials, which is a general framework for various multidimensional spinning tops, as well as Beauville systems, we prove that if the spectral curve is nodal, then all singularities on the correspo...

متن کامل

Alexander polynomials of non-locally-flat knots

We generalize the classical study of Alexander polynomials of smooth or PL locally-flat knots to PL knots that are not necessarily locally-flat. We introduce three families of generalized Alexander polynomials and study their properties. For knots with point singularities, we obtain a classification of these polynomials that is complete except for one special low-dimensional case. This classifi...

متن کامل

Arc Spaces , Motivic Integration

The concept ofmotivic integrationwas invented by Kontsevich to show that birationally equivalent Calabi-Yau manifolds have the same Hodge numbers. He constructed a certain measure on the arc space of an algebraic variety, the motivic measure, with the subtle and crucial property that it takes values not in R, but in the Grothendieck ring of algebraic varieties. A whole theory on this subject wa...

متن کامل

Singularities of Dual Varieties in Characteristic 2

We investigate unibranched singularities of dual varieties of evendimensional smooth projective varieties in characteristic 2.

متن کامل

Stringy Hodge numbers of threefolds

Batyrev has defined the stringy E-function for complex varieties with at most log terminal singularities. It is a rational function in two variables if the singularities are Gorenstein. Furthermore, if the variety is projective and its stringy E-function is a polynomial, Batyrev defined its stringy Hodge numbers essentially as the coefficients of this E-function, generalizing the usual notion o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011