Identifying the Epitope Regions of Therapeutic Antibodies Based on Structure Descriptors
نویسندگان
چکیده
Therapeutic antibodies are widely used for disease detection and specific treatments. However, as an exogenous protein, these antibodies can be detected by the human immune system and elicit a response that can lead to serious illnesses. Therapeutic antibodies can be engineered through antibody humanization, which aims to maintain the specificity and biological function of the original antibodies, and reduce immunogenicity. However, the antibody drug effect is synchronously reduced as more exogenous parts are replaced by human antibodies. Hence, a major challenge in this area is to precisely detect the epitope regions in immunogenic antibodies and guide point mutations of exogenous antibodies to balance both humanization level and drug effect. In this article, the latest dataset of immunoglobulin complexes was collected from protein data bank (PDB) to discover the spatial features of immunogenic antibody. Furthermore, a series of structure descriptors were generated to characterize and distinguish epitope residues from non-immunogenic regions. Finally, a computational model was established based on structure descriptors, and results indicated that this model has the potential to precisely predict the epitope regions of therapeutic antibodies. With rapid accumulation of immunoglobulin complexes, this methodology could be used to improve and guide future antibody humanization and potential clinical applications.
منابع مشابه
Compatibility of B-Sheets with Epitopes Predicted by Immunoinformatic in Human IgG
Background & Aims: Antibodies, well-known as immunoglobulins (Igs), are produced by B lymphocytes and specifically defend against pathogens. Igs are glycoproteins and have high diagnostic value in several diseases including infections (1). Igs are composed of light and heavy chains (2, 3). Each chain is comprised of about 110-120 amino acid residues which create immunoglobulin folds named domai...
متن کاملExpression of G1- epitope of bovine ephemeral fever virus in E. coli : A novel candidate to develop ELISA kit
Bovine ephemeral fever is an acute and arthropod-borne viral disease of cattle and water buffalo which occurs seasonally in most of the world tropical and subtropical regions. The epizootic feature of the disease has been reported in Iran with serious economic consequences. The surface glycoprotein G of bovine ephemeral fever virus (BEFV) is composed of 4 antigenic sites (G1-G4) and plays the m...
متن کاملکاربری پروتیینهای جدید در ساخت واکسن استافیلوکوکوس اورئوس
Background: Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the spread of antibiotic resistance. Novel potential targets for therapeutic antibodies are products of staphylococcal genes expressed during human infection. Previously, the secreted and surface-exposed proteins among seroreactive antigens have been discovered. Furthermore...
متن کاملStructure-Based Design of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses to a Conserved Epitope.
Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody i...
متن کاملProduction and Evaluation of Specific Single-Chain Antibodies against CTLA-4 for Cancer-Targeted Therapy
Background: Cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) molecules are expressed on T-cells and inhibit their function by inhibiting activation of subsequent T-cell molecular pathways. Blocking of CTLA-4 inhibits the growth of malignant tumor cells. Anti-CTLA-4 monoclonal antibodies activate the immune system against cancer. Due to several advantages of single-chain antibodi...
متن کامل