Moving Frames for Pseudo–Groups. II. Differential Invariants for Submanifolds

نویسندگان

  • Peter J. Olver
  • Juha Pohjanpelto
چکیده

This paper is the second in a series that develops a theory of moving frames for pseudogroup actions. In this paper, we define a moving frame for free pseudo-group action on the submanifolds, illustrated by explicit examples. Our methods, based on the consequential moving frame connection, provides an effective means for explicitly determining complete systems of differential invariants and invariant differential forms, classifying their syzygies and recurrence relations, and solving equivalence and symmetry problems arising in a broad range of applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving Frames for Lie Pseudo–Groups

We propose a new, constructive theory of moving frames for Lie pseudo-group actions on submanifolds. The moving frame provides an effective means for determining complete systems of differential invariants and invariant differential forms, classifying their syzygies and recurrence relations, and solving equivalence and symmetry problems arising in a broad range of applications. Mathematics subj...

متن کامل

Moving Frames for Pseudo–Groups. I. The Maurer–Cartan Forms

This paper begins a series devoted to developing general and practical theory of moving frames for infinite-dimensional Lie pseudo-groups. In this first, preparatory part, we present a new, direct approach to the construction of invariant Maurer–Cartan forms and the Cartan structure equations for a pseudo-group. Our approach is completely explicit and avoids reliance on the theory of exterior d...

متن کامل

Signature submanifolds for some equivalence problems

This article concerned on the study of signature submanifolds for curves under Lie group actions SE(2), SA(2) and for surfaces under SE(3). Signature submanifold is a regular submanifold which its coordinate components are differential invariants of an associated manifold under Lie group action, and therefore signature submanifold is a key for solving equivalence problems.

متن کامل

Maurer–Cartan Forms and the Structure of Lie Pseudo–Groups

This paper begins a series devoted to developing a general and practical theory of moving frames for infinite-dimensional Lie pseudo-groups. In this first, preparatory part, we present a new, direct approach to the construction of invariant Maurer–Cartan forms and the Cartan structure equations for a pseudo-group. Our approach is completely explicit and avoids reliance on the theory of exterior...

متن کامل

Recursive Moving Frames for Lie Pseudo-Groups

This paper introduces a new, fully recursive algorithm for computing moving frames and differential invariants of Lie pseudo-group actions. The recursive method avoids unwieldy symbolic expressions that complicate the treatment of large scale applications of the equivariant moving frame method. The development leads to novel results on partial moving frames, structure equations, and new differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002