Epigenetic regulation of Plasmodium falciparum clonally variant gene expression during development in Anopheles gambiae
نویسندگان
چکیده
P. falciparum phenotypic plasticity is linked to the variant expression of clonal multigene families such as the var genes. We have examined changes in transcription and histone modifications that occur during sporogonic development of P. falciparum in the mosquito host. All var genes are silenced or transcribed at low levels in blood stages (gametocyte/ring) of the parasite in the human host. After infection of mosquitoes, a single var gene is selected for expression in the oocyst, and transcription of this gene increases dramatically in the sporozoite. The same PF3D7_1255200 var gene was activated in 4 different experimental infections. Transcription of this var gene during parasite development in the mosquito correlates with the presence of low levels of H3K9me3 at the binding site for the PF3D7_1466400 AP2 transcription factor. This chromatin state in the sporozoite also correlates with the expression of an antisense long non-coding RNA (lncRNA) that has previously been shown to promote var gene transcription during the intraerythrocytic cycle in vitro. Expression of both the sense protein-coding transcript and the antisense lncRNA increase dramatically in sporozoites. The findings suggest a complex process for the activation of a single particular var gene that involves AP2 transcription factors and lncRNAs.
منابع مشابه
Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum.
Members of the Plasmodium falciparum var gene family encode clonally variant adhesins, which play an important role in the pathogenicity of tropical malaria. Here we employ a selective panning protocol to generate isogenic P.falciparum populations with defined adhesive phenotypes for CD36, ICAM-1 and CSA, expressing single and distinct var gene variants. This technique has established the frame...
متن کاملMicroRNA Tissue Atlas of the Malaria Mosquito Anopheles gambiae
Anopheles gambiae mosquitoes transmit the human malaria parasite Plasmodium falciparum, which causes the majority of fatal malaria cases worldwide. The hematophagous lifestyle defines mosquito reproductive biology and is exploited by P. falciparum for its own sexual reproduction and transmission. The two main phases of the mosquito reproductive cycle, previtellogenic (PV) and postblood meal (PB...
متن کاملComparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria Parasites
Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle...
متن کاملCaspar Controls Resistance to Plasmodium falciparum in Diverse Anopheline Species
Immune responses mounted by the malaria vector Anopheles gambiae are largely regulated by the Toll and Imd (immune deficiency) pathways via the NF-kappaB transcription factors Rel1 and Rel2, which are controlled by the negative regulators Cactus and Caspar, respectively. Rel1- and Rel2-dependent transcription in A. gambiae has been shown to be particularly critical to the mosquito's ability to ...
متن کاملEngineered Resistance to Plasmodium falciparum Development in Transgenic Anopheles stephensi
Transposon-mediated transformation was used to produce Anopheles stephensi that express single-chain antibodies (scFvs) designed to target the human malaria parasite, Plasmodium falciparum. The scFvs, m1C3, m4B7, and m2A10, are derived from mouse monoclonal antibodies that inhibit either ookinete invasion of the midgut or sporozoite invasion of salivary glands. The scFvs that target the parasit...
متن کامل