Open-ended category learning for language acquisition

نویسندگان

  • Luís Seabra Lopes
  • Aneesh Chauhan
چکیده

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Motivated by the need to support language-based communication between robots and their human users, as well as grounded symbolic reasoning, this paper presents a learning architecture that can be used by robotic agents for long-term and open-ended category acquisition. To be more adaptive and to improve learning performance as well as memory usage, this learning architecture includes a metacognitive processing component. Multiple object representations and multiple classifiers and classifier combinations are used. At the object level, the main similarity measure is based on a multi-resolution matching algorithm. Categories are represented as sets of known instances. In this instance-based approach, storing and forgetting rules optimise memory usage. Classifier combinations are based on majority voting and the Dempster–Shafer evidence theory. All learning computations are carried out during the normal execution of the agent, which allows continuous monitoring of the performance of the different classifiers. The measured classification successes of the individual classifiers support an attentional selection mechanism, through which classifier combinations are dynamically reconfigured and a specific classifier is chosen to predict the category of a new unseen object. A simple physical agent, incorporating these learning capabilities, is used to test the approach. A long-term experiment was carried out having in mind the open-ended nature of category learning. With the help of a human mediator, the agent incrementally learned 68 categories of real-world objects visually perceivable through an inexpensive camera. Various aspects of the approach are evaluated through systematic experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Experiential Approaches: Structured Language Learning Experiences versus Conversation Partners for Changing Pre-Service Teacher Beliefs

Research has shown that language teachers’ beliefs are often difficult to change through education.  Experiential learning may help, but more research is needed to understand how experiential approaches shape perceptions. This study compares two approaches, conversation partners (CONV) and structured language learning experiences (SLLE), integrated into a course in language acquisition. Partici...

متن کامل

Iranian EFL Learners’ Perception of the Efficacy and Affordance of Activity Theory-based Computer Assisted Language Learning in Writing Achievement

Second language writing instruction has been greatly influenced by the growing importance of technology and the recent shift of paradigm from a cognitive to a social orientation in second language acquisition (Lantolf & Thorne, 2006). Therefore, the applications of computer assisted language learning and activity theory have been suggested as a promising framework for writing studies. The prese...

متن کامل

Scaling Up Category Learning for Language Acquisition in Human-Robot Interaction

Motivated by the need to support language-based communication between robots and their human users, as well as grounded symbolic reasoning, this paper presents a learning architecture that can be used by robotic agents for long-term and open-ended category acquisition. In this learning architecture, multiple object representations and multiple classifiers and classifier combinations are used. A...

متن کامل

Aiding categorization by grounding spoken words - an infant inspired approach to concept formation and language acquisition

Naming is a powerful cognitive tool that facilitates categorization by forming an association between words and their referents. There is evidence in child development literature that strong links exist between word-learning and concept formation. A growing view is also emerging that language is a cultural product acquired through social interactions. Inspired by these studies, this paper prese...

متن کامل

A Dynamical System Approach to Research in Second Language Acquisition

Epistemologically speaking, second language acquisition research (SLAR) might be reconsidered from a complex dynamical system view with interconnected aspects in the ecosystem of language acquisition. The present paper attempts to introduce the tenets of complex system theory and its application in SLAR. It has been suggested that the present dominant traditions in language acquisition research...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Connect. Sci.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2008