Induction of nitric oxide synthase and activation of signaling proteins in Anopheles mosquitoes by the malaria pigment, hemozoin.
نویسندگان
چکیده
Anopheles stephensi, a major vector for malaria parasite transmission, responds to Plasmodium infection by synthesis of inflammatory levels of nitric oxide (NO), which can limit parasite development in the midgut. We have previously shown that Plasmodium falciparum glycosylphosphatidylinositols (PfGPIs) can induce A. stephensi NO synthase (AsNOS) expression in the midgut epithelium in vivo in a manner similar to the manner in which cytokines and NO are induced by PfGPIs in mammalian cells. In mosquito cells, signaling by PfGPIs and P. falciparum merozoites is mediated through Akt/protein kinase B (Akt/PKB), the mitogen-activated protein kinase kinase DSOR1, and extracellular signal-regulated kinase (ERK). In mammalian cells, a second parasite factor, malaria pigment or hemozoin (Hz), signals NOS induction through ERK- and nuclear factor kappa B-dependent pathways and has been demonstrated to be a novel proinflammatory ligand for Toll-like receptor 9. In this study, we demonstrate that Hz can also induce AsNOS gene expression in immortalized A. stephensi and Anopheles gambiae cell lines in vitro and in A. stephensi midgut tissue in vivo. In mosquito cells, Hz signaling is mediated through transforming growth factor beta-associated kinase 1, Akt/PKB, ERK, and atypical protein kinase C zeta/lambda. Our results show that Hz is a prominent parasite-derived signal for Anopheles and that signaling pathways activated by PfGPIs and Hz have both unique and shared components. Together with our previous findings, our data indicate that parasite signaling of innate immunity is conserved in mosquito and mammalian cells.
منابع مشابه
AGE proteins as a causative factor in Alzheimer's Disease
The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...
متن کاملAGE proteins as a causative factor in Alzheimer's Disease
The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...
متن کاملInduction of nitric oxide synthase in Anopheles stephensi by Plasmodium falciparum: mechanism of signaling and the role of parasite glycosylphosphatidylinositols.
Malaria parasite (Plasmodium spp.) infection in the mosquito Anopheles stephensi induces significant expression of A. stephensi nitric oxide synthase (AsNOS) in the midgut epithelium as early as 6 h postinfection and intermittently thereafter. This induction results in the synthesis of inflammatory levels of nitric oxide (NO) in the blood-filled midgut that adversely impact parasite development...
متن کاملMAPK ERK Signaling Regulates the TGF-β1-Dependent Mosquito Response to Plasmodium falciparum
Malaria is caused by infection with intraerythrocytic protozoa of the genus Plasmodium that are transmitted by Anopheles mosquitoes. Although a variety of anti-parasite effector genes have been identified in anopheline mosquitoes, little is known about the signaling pathways that regulate these responses during parasite development. Here we demonstrate that the MEK-ERK signaling pathway in Anop...
متن کاملAnopheles stephensi Heme Peroxidase HPX15 Suppresses Midgut Immunity to Support Plasmodium Development
The heme peroxidase HPX15 is an evolutionary conserved anopheline lineage-specific gene. Previously, we found that this gene is present in the genome of 19 worldwide distributed different species of Anopheles mosquito and its orthologs are absent in other mosquitoes, insects, or human. In addition, 65-99% amino acid identity among these 19 orthologs permitted us to hypothesize that the function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 75 8 شماره
صفحات -
تاریخ انتشار 2007