Reaction time to peripheral visual stimuli during exercise under hypoxia.

نویسندگان

  • Soichi Ando
  • Yosuke Yamada
  • Masahiro Kokubu
چکیده

The purpose of this study was to test the hypothesis that decrease in cerebral oxygenation compromises an individual's ability to respond to peripheral visual stimuli during exercise. We measured the simple reaction time (RT) to peripheral visual stimuli at rest and during and after cycling at three different workloads [40%, 60%, and 80% peak oxygen uptake (VO2)] under either normoxia [inspired fraction of oxygen (FIO2)=0.21] or normobaric hypoxia (FIO2=0.16). Peripheral visual stimuli were presented at 10 degrees to either the right or the left of the midpoint of the eyes. Cerebral oxygenation was monitored during the RT measurement over the right frontal cortex with near-infrared spectroscopy. We used the premotor component of RT (premotor time) to assess effects of exercise on the central process. The premotor time was significantly longer during exercise at 80% peak VO2 (normoxia: 214.2+/-33.0 ms, hypoxia: 221.5+/-30.1 ms) relative to that at rest (normoxia: 201.0+/-27.2 ms, hypoxia: 202.9+/-29.7 ms) (P<0.01). Under normoxia, cerebral oxygenation gradually increased up to 60% peak VO2 and then decreased to the resting level at 80% peak VO2. Under hypoxia, cerebral oxygenation progressively decreased as exercise workload increased. We found a strong correlation between increase in premotor time and decrease in cerebral oxygenation (r2=0.89, P<0.01), suggesting that increase in premotor time during exercise is associated with decrease in cerebral oxygenation. Accordingly, exercise at high altitude may compromise visual perceptual performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Exercise Under Hypoxia on Cognitive Function

Increasing evidence suggests that cognitive function improves during a single bout of moderate exercise. In contrast, exercise under hypoxia may compromise the availability of oxygen. Given that brain function and tissue integrity are dependent on a continuous and sufficient oxygen supply, exercise under hypoxia may impair cognitive function. However, it remains unclear how exercise under hypox...

متن کامل

Acute physical exercise under hypoxia improves sleep, mood and reaction time.

This study aimed to assess the effect of two sessions of acute physical exercise at 50% VO2peak performed under hypoxia (equivalent to an altitude of 4500 m for 28 h) on sleep, mood and reaction time. Forty healthy men were randomized into 4 groups: Normoxia (NG) (n = 10); Hypoxia (HG) (n = 10); Exercise under Normoxia (ENG) (n = 10); and Exercise under Hypoxia (EHG) (n = 10). All mood and reac...

متن کامل

Pronounced muscle deoxygenation during supramaximal exercise under simulated hypoxia in sprint athletes.

The purpose of this study was to determine whether acute hypoxia alters the deoxygenation level in vastus lateralis muscle during a 30 s Wingate test, and to compare the muscle deoxygenation level between sprint athletes and untrained men. Nine male track sprinters (athletic group, VO2max 62.5 ± 4.1 ml/kg/min) and 9 healthy untrained men (untrained group, VO2max 49.9 ± 5.2 ml·kg(-1)·min(-1)) pe...

متن کامل

The effect of aerobic training on the control of high blood sugar levels, insulin sensitivity and frequency content of ground reaction forces during running in patients with diabetic peripheral neuropathy

Introduction: Failure to control glucose levels for a long time leads to various complications, including neuropathy and decreased muscle mass. Our aim was to investigate the effect of controlling high blood sugar levels and improving insulin sensitivity following aerobic exercise on changes in lean body mass and frequency of ground reaction forces during running in patients with diabetic neuro...

متن کامل

Peripheral fatigue is not critically regulated during maximal, intermittent, dynamic leg extensions.

Central motor drive to active muscles is believed to be reduced during numerous exercise tasks to prevent excessive peripheral fatigue development. The purpose of the present study was to use hypoxia to exacerbate physiological perturbations during a novel, intermittent exercise task and to explore the time-course and interplay between central and peripheral neuromuscular adjustments. On separa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 108 5  شماره 

صفحات  -

تاریخ انتشار 2010