CD11c expression identifies a population of extrafollicular antigen-specific splenic plasmablasts responsible for CD4 T-independent antibody responses during intracellular bacterial infection.
نویسندگان
چکیده
Although T-independent immunity is known to be generated against bacterial capsular and cell wall polysaccharides expressed by a number of bacterial pathogens, it has not been studied in depth during intracellular bacterial infections. Our previous study demonstrated that Ehrlichia muris, an obligate intracellular tick-borne pathogen, generates protective classical TI responses in CD4 T cell-deficient C57BL/6 mice. We found that E. muris T-independent immunity is accompanied by the expansion of a very large extrafollicular spleen population of CD11c(low)-expressing plasmablasts that exhibit characteristics of both B-1 and marginal zone B cells. The plasmablasts comprised up to 15% of the total spleen lymphocytes and approximately 70% of total spleen IgM(high)IgD(low) cells during peak infection in both wild-type and MHC class II-deficient mice. The CD11c(low) cells exhibited low surface expression of B220, CD19, and CD1d, high expression of CD11b, CD43, but did not express CD5. Approximately 50% of the CD11c(low) cells also expressed CD138. In addition to CD11b and CD11c, the plasmablasts expressed the beta(1) (CD29) and alpha4 (CD49d) integrins, as well as the chemokine receptor CXCR4, molecules which may play roles in localizing the B cells extrafollicular region of the spleen. During peak infection, the CD11c(low) cells accounted for the majority of the IgM-producing splenic B cells and nearly all of the E. muris outer membrane protein-specific IgM-secreting cells. Thus, during this intracellular bacterial infection, CD11c expression identifies a population of Ag-specific spleen plasmablasts responsible for T-independent Ab production.
منابع مشابه
Malaria infection changes the ability of splenic dendritic cell populations to stimulate antigen-specific T cells
The capacity of splenic CD11c+ dendritic cell (DC) populations to present antigen (Ag) to T cells differs during malarial infection with Plasmodium chabaudi in mice. Both CD11c+ CD8+ and CD8- DCs presented malarial peptides on their surface during infection. However, although both DC subsets expressing malaria peptides could induce interferon-gamma production by CD4 T cells, only CD8- DCs isola...
متن کاملAntigen affinity controls rapid T-dependent antibody production by driving the expansion rather than the differentiation or extrafollicular migration of early plasmablasts.
To optimize the initial wave of Ab production against T-dependent Ags, primary B cell clones with the highest Ag affinity are selected to generate the largest extrafollicular plasmablast (PB) responses. The mechanism behind this remains undefined, primarily due to the difficulty of analyzing low frequency Ag-specific B cells during the earliest phases of the immune response when key differentia...
متن کاملExtrafollicular B cell activation by marginal zone dendritic cells drives T cell–dependent antibody responses
Dendritic cells (DCs) are best known for their ability to activate naive T cells, and emerging evidence suggests that distinct DC subsets induce specialized T cell responses. However, little is known concerning the role of DC subsets in the initiation of B cell responses. We report that antigen (Ag) delivery to DC-inhibitory receptor 2 (DCIR2) found on marginal zone (MZ)-associated CD8α(-) DCs ...
متن کاملDC subset–specific induction of T cell responses upon antigen uptake via Fcγ receptors in vivo
Dendritic cells (DCs) are efficient antigen-presenting cells equipped with various cell surface receptors for the direct or indirect recognition of pathogenic microorganisms. Interestingly, not much is known about the specific expression pattern and function of the individual activating and inhibitory Fcγ receptors (FcγRs) on splenic DC subsets in vivo and how they contribute to the initiation ...
متن کاملSalmonella induces a switched antibody response without germinal centers that impedes the extracellular spread of infection.
T-dependent Ab responses are characterized by parallel extrafollicular plasmablast growth and germinal center (GC) formation. This study identifies that, in mice, the Ab response against Salmonella is novel in its kinetics and its regulation. It demonstrates that viable, attenuated Salmonella induce a massive early T-dependent extrafollicular response, whereas GC formation is delayed until 1 mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 181 2 شماره
صفحات -
تاریخ انتشار 2008