An Injectable Nanofiber-Hydrogel Composite with Interfacial Bonding for Soft Tissue Filling and Regeneration.

نویسندگان

  • Georgia C Yalanis
  • Sashank Reddy
  • Russ Martin
  • Jisuk Choi
  • Gerald Brandacher
  • Hai-Quan Mao
  • Justin M Sacks
چکیده

INTRODUCTION: Restoration of acquired, congenital, or age-related soft tissue defects using autologous or implantable materials can cause donor site morbidity, infection, device failure, and fibrosis. Injectable fillers are limited by variable resorption and fat grafting causes necrosis in large volumes. An alternative approach using the body’s regenerative capacity and an injectable synthetic scaffold would allow immediate restoration of form while permitting native tissue regeneration. We developed a novel nanofiber-hydrogel composite using FDAapproved materials with optimal biomechanical properties, porosity, crosslinking density, and interfacial bonding to maintain immediate 3D structure and promote soft tissue regeneration upon subcutaneous injection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstract: The Next-Generation Dermal Filler: Nanofiber-Hydrogel Composite

INTRODUCTION: Soft tissue losses from aging, trauma, or congenital malformation affect millions of people each year. Injectable fillers are effective in providing soft tissue volumization for facial rejuvenation and reconstruction. The majority of dermal fillers are based on hyaluronic acid (HA) and rely on high concentrations of HA to provide adequate viscosity and temporary persistence. This ...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

Designer Self-Assembling Peptide Nanofiber Scaffolds Containing Link Protein N-Terminal Peptide Induce Chondrogenesis of Rabbit Bone Marrow Stem Cells

Designer self-assembling peptide nanofiber hydrogel scaffolds have been considered as promising biomaterials for tissue engineering because of their excellent biocompatibility and biofunctionality. Our previous studies have shown that a novel designer functionalized self-assembling peptide nanofiber hydrogel scaffold (RLN/RADA16, LN-NS) containing N-terminal peptide sequence of link protein (li...

متن کامل

Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures

Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel-elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plastic and reconstructive surgery

دوره 136 4 Suppl  شماره 

صفحات  -

تاریخ انتشار 2015