On the evaluation of some sparse polynomials
نویسندگان
چکیده
We give algorithms for the evaluation of sparse polynomials of the form P = p0 + p1x + p2x 4 + · · ·+ pN−1x 2 , for various choices of coefficients pi. First, we take pi = p i, for some fixed p; in this case, we address the question of fast evaluation at a given point in the base ring, and we obtain a cost quasi-linear in √ N . We present experimental results that show the good behavior of this algorithm in a floating-point context, for the computation of Jacobi theta functions. Next, we consider the case of arbitrary coefficients; for this problem, we study the question of multiple evaluation: we show that one can evaluate such a polynomial at N values in the base ring in sub-quadratic time.
منابع مشابه
Bernoulli operational matrix method for system of linear Volterra integral equations
In this paper, the numerical technique based on hybrid Bernoulli and Block-Pulse functions has been developed to approximate the solution of system of linear Volterra integral equations. System of Volterra integral equations arose in many physical problems such as elastodynamic, quasi-static visco-elasticity and magneto-electro-elastic dynamic problems. These functions are formed by the hybridi...
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملOn Counting Polynomials of Some Nanostructures
The Omega polynomial(x) was recently proposed by Diudea, based on the length of strips in given graph G. The Sadhana polynomial has been defined to evaluate the Sadhana index of a molecular graph. The PI polynomial is another molecular descriptor. In this paper we compute these three polynomials for some infinite classes of nanostructures.
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملHardware operators for function evaluation using sparse-coefficient polynomials
This article presents dedicated hardware arithmetic operators for function evaluation. The proposed solution uses polynomial approximations with sparse coefficients which leads to efficient hardware implementations. Up to 2× faster and 8× smaller operators are reported compared to standard implementations. Introduction: Polynomial approximations are widely used in digital systems for function e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 87 شماره
صفحات -
تاریخ انتشار 2018